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» What is forensics?
e Principles for evaluation of evidence
» Practical evaluation of evidence;

e Hypotheses
o Likelihood Ratio (LR)
e Assumptions. Interpretation

» Complications;
e Mutations

o Complex pedigrees: Large, inbred
o ...

» Part |I: Alternatives to LR, interpretation;

e Introducing prior information like: we may have some
information on say age
e Exclusion power
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Different legal systems

P> Forensics: the application of science in legal settings.
> Different legal systems, traditions, have implications for the
role of the forensic expert:
e Adversarial. US, UK, other English speaking countries;
o “battle of experts”
e Inquisitorial. Large parts of mainland Europe:

@ “unbiased, independent expert opinion”
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Principles for evaluation of evidence

@ To evaluate the uncertainty of any given proposition it is
necessary to consider at least one alternative proposition.

@ Scientific interpretation is based on questions of the following
kind: What is the probability of the data given the
proposition?

© Scientific evidence is conditioned not only by the competing
propositions, but also by the framework of circumstances
within which they are to be evaluated.
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Overview of forensic genetics

( DNA-evidence |
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Hypotheses

[ ] (O » Hi: AF biological father of CH.
AF MO )
1718 o » H,: AF and CH unrelated.
8/8 -I- » Notation. Sometimes:
> H1 = Hp :
“prosecution hypothesis”,
» H, = Hp:
CH " -
17117 defence hypothesis”.
8/8
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Likelihood Ratio (LR)

Definition of the LR
LRH17H2(E) =

depending on
» The hypotheses Hi, H> under consideration
» The data E that we are considering

Meaning of the LR

> P(E | H) is the probability to get E, if hypothesis H is true

» It is also called the likelihood of the hypothesis, given the
evidence E

» The LR says how much better the explanation for E offered
by Hj is, compared to the explanation offered by Hj.

» The individual likelihoods P(E | H;) do not allow for any
inference considered on their own: the issue is not to predict
the evidence (as P(E | H) does) but to see which mechanism
explains it better

» Special LR-s: PI (paternity index), SI (sib index),...
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Likelihood Ratio. Example

AF
17/18
8/8

CH
17/17
8/8

(ro PELH) _ _ Plech | gar)
P(E | H2) P(gcH)
1
5P17 1
LRy = 25~ = = 2.45
LT P2 T 2% 0204
R=2 1 g1

p:  0.554
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Multiplying LR—s

Recall that for events A and B
P(AN B) = P(A)P(B)
if A and B are independent. Similarly
LR = LRy x LRy =2.45 x 1.81 = 4.4.

if markers are independent.

» The independence assumption holds if markers are unlinked
(not always needed) and in linkage equilibrium:
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Linkage equilibrium

Locus 1 with allele frequencies p,
+ Locus 2 with allele frequencies Qa

* Haplotype frequencies Hay

If Hab = pagp = 0 : “linkage equilibrium” (LE). Otherwise Linkage
Disequilibrium (LD).

« This is a statistical property

+ It does not depend on the loci themselves, e.g., loci may be in LE in a
single population but not in a composed population

« Is a property similar to Hardy-Weinberg equilibrium: a statistical
property, following from Mendelian segregation. LE is asymptotically
reached (LD diminishes per generation) in a homogeneous infinite
population if recombination is possible.
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Example: Haplotype frequencies

locl1 loc2 freql freq2  P(hap|LE) Count P(hap | Count)
A B 0.2 0.3 0.2%0.3=0.06 10 10/100=0.10
A b 0.2 0.7 0.2%0.7=0.14 15 15/100=0.15
a B 0.8 0.3 0.8%0.3=0.24 25 25/100=0.25
a b 0.8 0.7 0.8*0.7=0.56 50 50/100=0.50
tot 1.00 100 1.00

Table 1: LE and count based haplotype frequency estimates
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Likelihood Ratio. Software

» Familias, http://familias.no. R version not maintained
» forrel. This course
» DNA-View, ...
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http://familias.no

forrel

» Input can be entered manually or from files, see exercises
» For simplicity, in the lecture, we convert .fam - files

» Basic functions: readFam, plotPedList, kinshipLR
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Step 1: Input and plot

library(forrel)

peds = readFam("Demo2markers.fam", verbose = FALSE)

plotPedList(peds, marker=1:2, shaded = typedMembers,
frametitles = c("H1","H2"))

# http://familias.name/norbisRelatedness/Demo2markers.fam
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Likelihood Ratio. Plot

H1 H2
Z O
AF added_1
1718 -I-
B3 -I-
A ]
% CH AF
17T 1718
CH a3 3/3
17T
/3

15/39



Step 2: Calculation

res = kinshipLR(peds, ref = 2)
res # main output
unclass(res) # all output

Total LR:
Hl1: father HZ2: not father
4.423845 1. 000000
> unclass(res)
fLRtotal
Hl: father HZ2: not father
4.423845 1.000000
$LRperMarker
H1: father H2: not father
D351358 2.450403 1

TPOX 1.805354 1
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Advantages of R: Generality

Assume "AF" is the child of first cousins:

H1 = peds[[1]]

H2 = peds[[2]]

founderInbreeding(H1,"AF") = 1/16
founderInbreeding (H2[[2]],"AF") = 1/16
kinshipLR(peds, ref = 2) #Same LR in *this* case

Inbreeding does not change LR in this case since

IR — P(gcH | g8aF)
P(gcH)
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Step 3: Interpretation and assumptions

» Interpretation LR=4.4: The
data is 4.4 times more likely

D O if AF is assumed to be the
AE MO father compared to the
17/18 -I- unrelated alternative.

8/8 -/-

» Assumptions

e Hardy-Weinberg
Equilibrium (HWE).
e Independent markers.

CH o No artefacts:
17117 no mutation, no silent
8/8

alleles, no drop—out/in,
no error; discussed later)
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One Verbal Scale for LR

... do not support one

1 proposition over the other
2-10 weak support
10-100 moderate support
100 -1000 moderately strong support
1000 - 10000 strong support

10000 - 1 million very strong support
Over 1 million extremely strong support

*EMNFEI Guideline for Evaluative Reporting in Forensic Science
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Real case. Output from Familias

Compare DNA X
System | T [ chid | Alleged father |
D351358 246675184 17,18 17,17
THO1 1.194605231 6,9 67
D21511 1.095934095 29,30 28,29
D18s51 2.153261166 14, 16 18, 17
PENTA_E 0 711 10, 16
DsSsgis 1406126529 12,12 12,13
D135317 4.041610583 8,8 8, 11
D7s820 1.433569385 9, 10 9,13
D165539 8.312297405 13, 14 11, 14
CSF1IPO 2024678178 10, 10 10,11
PENTA D 1198925175 8,11 8,13
VWA 5.565000184 19, 19 17, 18
D8s1179 9.650567455 13,16 11, 16
TPOX 1.78765206 8,8 8,8
FGA 2.956393798 21,22 21,21
D125391 2.183521522 19,22 19,23
D151656 3.333333333 14, 16 14, 15
D251338 3.147059638 18,20 18, 23
D2251045 26.74815224 12,12 12,15
D25441 1.445947587 10, 13 10, 15
D195433 3.343765883 12,15 12,14
Total LR: 0
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Beyond standard cases: Complicating factors

Mutations.

Complex pedigrees: Large, inbred.
Deviations from HWE. Theta corrrection.
Inbred founders. founderlnbreeding.

Silent alleles: Homozygote or silent allele?

Artefacts: Drop—out, drop—in, genotyping error.
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Mutation. Motivation

Marker CH AF LR | LR(mut)
D3S1358 | 17/17 | 17/18 | 2.45 2.45
TPOX 8/8 8/8 | 1.81 1.80
D6S474 | 16/17 | 14/15 | 0.000 0.001
D19S433 | 12/15 | 12/14 | 3.34 3.34
Total 0 | 25070642
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Mutation:
» Observed if parent and child share no alleles.
» Other examples? Mendelian inconsistencies.
» Mutation models interesting also in population genetics

» The forensic community is well positioned to study mutations.
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Mutation: Biology

AAXE R R RN

» Mutation rates higher in males.

» Short mutations more likely: One step mutation more likely
than two steps and so on.

> Mutation rates:
http://www.cstl.nist.gov/strbase/mutation.htm
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http://www.cstl.nist.gov/strbase/mutation.htm

Standard example

14/15 -I-

16/17
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Non-standard example

1/2

3/4

1/5
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The mutation matrix specifies the model

mi1 M2 m3 ... Mip
mp1 M2 M3 ... Myp
m31 m32 m33 ... M3p

|l Ma1 Mp2 Mp3 ... Mpp |

mj; = allele i transmitted as j
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Mutation models in pedmut

custom. Completely general, see exercise.
equal. Simplest.
proportional. Favoured by mathematicians, not used much.

stepwise. Favoured by forensic case workers,

vVvYvyyvyy

onestep. Favoured by population geneticists.
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Stepwise mutation model

14 15 16 17
14 0.995000 0.00450 0.00045 0.000045
15 0.002380 0.99500 0.00238 0.000238
16 0.000238 0.00238 0.99500 0.002380
17 0.000045 0.00045 0.00450 0.995000
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Paternity case with mutation: R version

> peds = readram("Solutions2_9.fam", verhose = FALSE)
> kinshipLR(peds, ref = 2)$LRperMarker
H1: father H2: not father

D351358 2.466752 1
THOL 1.194605 1
D21511 1.095934 1
D18551 2.153261 1
PENTA_E 0.000000 1
D55818 1.406127 1
D135317 4.041611 1
D75820 1.433570 1
D165539 8.312297 1
CSF1PO 2.024678 1
PENTA_D  11.989252 1
VWA 5.565000 1
D851179 9.650567 1
TPOX 1.787652 1
FGA 2.956394 1
D125391 2.183522 1
D151656 3.333333 1
D251338 3.147060 1
D2251045 26.748152 1
D25441 1.445948 1
D195433 3.343766 1
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Paternity case with mutation: plot

% O

AF MO
10/16 -

7.

CH
711
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Below the "proportional” model is introduced for "PENTA_E":

peds = readFam("Solutions2_9.fam", verbose = FALSE)
H1 = peds[[1]]
H2 = peds[[2]]
mutmod (H1,marker="PENTA_E")=1ist ("prop",rate = 0.005)
mutmod (H2 ,marker="PENTA_E")=1list ("prop",rate = 0.005)
kinshipLR(peds, ref = 2)
Total LR:

H1 H2
53573994 1
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Stationarity. Intuitively

P M
Name |Frequer1cv | Alle... 1 2
; gg . 0.99 0.01
' 2 0.01 0.99

1- 1==1+ 2- 2l
Freq of ‘1’ next generation= 0.5- 0.99+0.5- 0.01 =0.5.

Freq of ‘2’ next generation =1-0.5=0.5.

Frequencies do not change, i.e., remain 0.5 and 0.5 and so
the model (M, p) is stationary.
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Stationarity*. Mathematics

M = {m;j;} mutation matrix.

v row vector with probabilities for the n alleles.

>
>
» Probability distribution for the alleles after one generation:vM.
» After k generations: vk,

>

If p is the vector of population probabilities for the alleles, a
mutation model (M, p) is stationary if and only if pM = p.
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Problems with non stationary models

» LR changes if irrelevant (untyped) persons are added.

» Frequencies change between generations; arbitrary choice
required.

» Differences can be inflated, cause confusion.
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Example with non—stationary mutation model

GF GM

AF MO
1

AF MO
11

CH

212

CH
212

LR = 1.010025
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Problems also with stationary models

1-2R 2R IR
M=| iR 1-R 3R
IR R 1-R

Stationary distribution p = (3/15,7/15,5/15), 0 < R < 0.5.

45R

PI(AF = 1/1, CH = 2/2 | AF father of CH) = % - 15—4,

PI(AF = 1/1, CH = 2/2 | CH father of AF) = 2% = %.
P1

Equality if and only if the mutation model is balanced, then:
p1mi2 = p2mpy.
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Example with non—balanced mutation model

H1 H2
AF added 1 CH added 1
U1 212
CH AF
212 U1
LR =0.66

38/39



Ll_lr'ﬁpab\e?’2

Reversible?”

Biologically OK?"

Model Parameters Statn:mary?1

Equal Mutation Rate NO YES NO NO

Proportional Expected (E) mutation Rate’ |YES YES YES NO

Stepwise Mutation Rate and Range6 NO NO NO For integer alleles
Stepwise (stationary) |Mutation Rate®and Range YES NO NO For integer alleles
Extended stepwwseg Mut Rate®’ Range, Rate 2’ NO NO NO YES®
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