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Different legal systems

I Forensics: the application of science in legal settings.
I Different legal systems, traditions, have implications for the

role of the forensic expert:
Adversarial. US, UK, other English speaking countries;

“battle of experts”
Inquisitorial. Large parts of mainland Europe:

“unbiased, independent expert opinion”
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Principles for evaluation of evidence

1 To evaluate the uncertainty of any given proposition it is
necessary to consider at least one alternative proposition.

2 Scientific interpretation is based on questions of the following
kind: What is the probability of the data given the
proposition?

3 Scientific evidence is conditioned not only by the competing
propositions, but also by the framework of circumstances
within which they are to be evaluated.
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Overview of forensic genetics
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Hypotheses

AF
17/18

8/8

MO
−/−
−/−

CH
17/17

8/8

I H1: AF biological father of CH.
I H2: AF and CH unrelated.
I Notation. Sometimes:
I H1 = HP :

“prosecution hypothesis”,
I H2 = HD :

“defence hypothesis”.
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Likelihood Ratio (LR)

Definition of the LR

LRH1,H2(E) =
P(E | H1)

P(E | H2)
,

depending on
I The hypotheses H1,H2 under consideration
I The data E that we are considering

Meaning of the LR
I P(E | H) is the probability to get E , if hypothesis H is true
I It is also called the likelihood of the hypothesis, given the

evidence E
I The LR says how much better the explanation for E offered

by H1 is, compared to the explanation offered by H2.
I The individual likelihoods P(E | Hi) do not allow for any

inference considered on their own: the issue is not to predict
the evidence (as P(E | H) does) but to see which mechanism
explains it better

I Special LR-s: PI (paternity index), SI (sib index),...
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Likelihood Ratio. Example

AF
17/18

8/8

MO
−/−
−/−

CH
17/17

8/8

LR =
P(E | H1)

P(E | H2)
= · · · = P(gCH | gAF )

P(gCH)

LR1 =
1
2p17

p2
17

=
1

2× 0.204 = 2.45

LR2 =
p8
p2

8
=

1
0.554 = 1.81.
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Multiplying LR–s

Recall that for events A and B

P(A ∩ B) = P(A)P(B)

if A and B are independent. Similarly

LR = LR1 × LR2 = 2.45× 1.81 = 4.4.

if markers are independent.
I The independence assumption holds if markers are unlinked

(not always needed) and in linkage equilibrium:
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Linkage equilibrium
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Example: Haplotype frequencies

loc1 loc2 freq1 freq2 P(hap | LE) Count P(hap | Count)
A B 0.2 0.3 0.2*0.3=0.06 10 10/100=0.10
A b 0.2 0.7 0.2*0.7=0.14 15 15/100=0.15
a B 0.8 0.3 0.8*0.3=0.24 25 25/100=0.25
a b 0.8 0.7 0.8*0.7=0.56 50 50/100=0.50

tot 1.00 100 1.00

Table 1: LE and count based haplotype frequency estimates
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Likelihood Ratio. Software

I Familias, http://familias.no. R version not maintained
I forrel. This course
I DNA-View, ...
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forrel

I Input can be entered manually or from files, see exercises
I For simplicity, in the lecture, we convert .fam - files
I Basic functions: readFam, plotPedList, kinshipLR
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Step 1: Input and plot

library(forrel)
peds = readFam("Demo2markers.fam", verbose = FALSE)
plotPedList(peds, marker=1:2, shaded = typedMembers,

frametitles = c("H1","H2"))
# http://familias.name/norbisRelatedness/Demo2markers.fam
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Likelihood Ratio. Plot
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Step 2: Calculation

res = kinshipLR(peds, ref = 2)
res # main output
unclass(res) # all output
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Advantages of R: Generality

Assume ”AF” is the child of first cousins:

H1 = peds[[1]]
H2 = peds[[2]]
founderInbreeding(H1,"AF") = 1/16
founderInbreeding(H2[[2]],"AF") = 1/16
kinshipLR(peds, ref = 2) #Same LR in *this* case

Inbreeding does not change LR in this case since

LR =
P(gCH | gAF )

P(gCH)
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Step 3: Interpretation and assumptions

AF
17/18

8/8

MO
−/−
−/−

CH
17/17

8/8

I Interpretation LR=4.4: The
data is 4.4 times more likely
if AF is assumed to be the
father compared to the
unrelated alternative.

I Assumptions
Hardy–Weinberg
Equilibrium (HWE).
Independent markers.
No artefacts:
no mutation, no silent
alleles, no drop–out/in,
no error; discussed later)
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Real case. Output from Familias
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Beyond standard cases: Complicating factors

I Mutations.
I Complex pedigrees: Large, inbred.
I Deviations from HWE. Theta corrrection.
I Inbred founders. founderInbreeding.
I Silent alleles: Homozygote or silent allele?
I Artefacts: Drop–out, drop–in, genotyping error.
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Mutation. Motivation

Marker CH AF LR LR(mut)
D3S1358 17/17 17/18 2.45 2.45

TPOX 8/8 8/8 1.81 1.80
D6S474 16/17 14/15 0.000 0.001

. . . . . . . . . . . . . . .
D19S433 12/15 12/14 3.34 3.34

Total 0 25070642
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Mutation:
I Observed if parent and child share no alleles.
I Other examples? Mendelian inconsistencies.
I Mutation models interesting also in population genetics
I The forensic community is well positioned to study mutations.
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Mutation: Biology

I Mutation rates higher in males.
I Short mutations more likely: One step mutation more likely

than two steps and so on.
I Mutation rates:

http://www.cstl.nist.gov/strbase/mutation.htm
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Standard example

14/15 −/−

16/17
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Non-standard example

−/− −/−

1/2 3/4 1/5
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The mutation matrix specifies the model


m11 m12 m13 . . . m1n
m21 m22 m23 . . . m2n
m31 m32 m33 . . . m3n
...

...
...

...
mn1 mn2 mn3 . . . mnn



mij = allele i transmitted as j
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Mutation models in pedmut

I custom. Completely general, see exercise.
I equal. Simplest.
I proportional. Favoured by mathematicians, not used much.
I stepwise. Favoured by forensic case workers,
I onestep. Favoured by population geneticists.
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Stepwise mutation model

14 15 16 17
14 0.995000 0.00450 0.00045 0.000045
15 0.002380 0.99500 0.00238 0.000238
16 0.000238 0.00238 0.99500 0.002380
17 0.000045 0.00045 0.00450 0.995000
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Paternity case with mutation: R version
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Paternity case with mutation: plot
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pedmut

Below the ”proportional” model is introduced for ”PENTA_E”:

peds = readFam("Solutions2_9.fam", verbose = FALSE)
H1 = peds[[1]]
H2 = peds[[2]]
mutmod(H1,marker="PENTA_E")=list("prop",rate = 0.005)
mutmod(H2,marker="PENTA_E")=list("prop",rate = 0.005)
kinshipLR(peds, ref = 2)
Total LR:

H1 H2
53573994 1
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Stationarity. Intuitively
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Stationarity*. Mathematics

I M = {mij} mutation matrix.
I v row vector with probabilities for the n alleles.
I Probability distribution for the alleles after one generation:vM.

I After k generations: vMk .
I If p is the vector of population probabilities for the alleles, a

mutation model (M, p) is stationary if and only if pM = p.

34 / 39



Problems with non stationary models

I LR changes if irrelevant (untyped) persons are added.
I Frequencies change between generations; arbitrary choice

required.
I Differences can be inflated, cause confusion.
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Example with non–stationary mutation model

GF GM

AF
1/1

MO

CH
2/2

AF
1/1

MO

CH
2/2

LR = 1.010025
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Problems also with stationary models

Example

M =

1− 2R 3
2R 1

2R
1
2R 1− R 1

2R
1
2R 1

2R 1− R


Stationary distribution p = (3/15, 7/15, 5/15), 0 ≤ R < 0.5.

PI(AF = 1/1,CH = 2/2 | AF father of CH) = m12
p2

=
45R
14 ,

PI(AF = 1/1,CH = 2/2 | CH father of AF) = m21
p1

=
35R
14 .

Equality if and only if the mutation model is balanced, then:
p1m12 = p2m21.
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Example with non–balanced mutation model

AF
1/1

added 1

CH
2/2

CH
2/2

added 1

AF
1/1

H1 H2

LR = 0.66
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