

Software - FamLinkX

DANIEL KLING & ANDREAS TILLMAR

Daniel.kling@rmv.se

Andreas.tillmar@rmv.se

• WORKSHOP 1 X-chromosomal markers in forensic genetics Daviel Kling & Andreas Tillmar

• WORKSHOP 2

Acreditación en el campo de la Genética Forense y estrategias de validación de ensayos Manuel Crespillo Márquez, Rosalía Izquierdo & Estel Eureig Cabanes

• WORKSHOP 3

La genética en la Identificación de víctimas a gran escala: comparación de perfiles y evaluación estadística con Familias Carlos Vullo & Lourdes Prieto

Teachers

Daniel Kling, PhD

- Forensic Expert
- National Board of Forensic Medicine, Sweden
- Worked in the field for almost 15 years
- Developer of Familias, FamLink and FamLinkX
- Applied biostatistics, relationship inference, genetic genealogy

Andreas Tillmar, PhD

- Forensic geneticist & Associate professor
- National Board of Forensic Medicine, Sweden and Linköping University, Sweden
- Worked in the field for almost 20 years
- Technical leadership mixed with R&D
- Applied biostatistics, relationship inference, population genetics, genetic genealogy

Disclaimer!

Points of view are those of the presenters and do not necessarily represent the official position or policies of the National Board of Forensic Medicine or ISFG. Certain commercial software, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.

Topics

- Software
- FamLinkX Demonstration

- Advanced topics
 - Creating pedigrees
 - Advanced settings
 - Simulations
- Validation

SOFTWARE

Several publications on formulas

Forensic Science International: Genetics Volume 6, Issue 2, March 2012, Pages 198-207

A general method to assess the utility of the
X-chromosomal markers in kinship testing

Nádia Pinto ^{a b c} 🙏 🖾 , Pedro V. Silva ^{b c}, António Amorim ^{a b}

Show more 🗸

+ Add to Mendeley 🛛 Share 🗦 Cite

https://doi.org/10.1016/j.fsigen.2011.04.014 a Get rights and content a

Abstract

In studies involving pedigree reconstruction and kinship estimation, it is acknowledged that some pedigrees have the same algebraic expressions for the joint genotypic probabilities and are, therefore, indistinguishable when considering only <u>genetic</u> information, no matter what the mode of transmission considered. Indeed, although standard forensic practice considers solely unlinked autosomal markers, the existence of pedigrees with the referred theoretical property (that are then said to belong to the same kinship class) is possible when considering any kind of genetic transmission. The research on genetic relatedness has always been linked to the root concept of identityby-descent (IBD). However, although the basic theoretical core for autosomal transmission has been long formalised, a general method allowing the decision if two redirares linking the passion theoretical to refor autosomal transmission has been long formalised.

Forensic Science International: Genetics Volume 5, Issue 1, January 2011, Pages 27-32

X-chromosome markers in kinship testing: A generalisation of the IBD approach identifying situations where their contribution is crucial

Nádia Pinto a b c 😤 🖾 , Leonor Gusmão a, António Amorim a b

Show more 🗸

🕂 Add to Mendeley 👒 Share 🍠 Cite

https://doi.org/10.1016/j.fsigen.2010.01.011 🤊

Get rights and content 🛪

Abstract

The standard practice of forensic kinship evaluation uses unlinked autosomal markers. However, X-chromosome markers have recently gained recognition as a powerful tool to complement the information provided by <u>autosomes</u>, particularly in complex cases.

Several publications on formulas

FLSEVIER

Volume 5, Issue 1, January 2011, Pages 27-32

X-chromosome markers in kinship testing: A generalisation of the IBD approach identifying situations where their contribution is crucial

Nádia Pinto a b c 😤 🖾 , Leonor Gusmão a, António Amorim a b

Show more \checkmark

🕂 Add to Mendeley 🛛 😪 Share 🍠 Cite

https://doi.org/10.1016/j.fsigen.2010.01.011 🕫

Get rights and content ↗

E C

Abstract

The standard practice of forensic kinship evaluation uses unlinked autosomal markers. However, X-chromosome markers have recently gained recognition as a powerful tool to complement the information provided by <u>autosomes</u>, particularly in complex cases. Box 1. Joint genotypic probabilities for X-markers and two females (Example)

Consider two commonly tested kinships involving two females where the analysis of X-markers seems to be useful: paternal half-sisters and paternal aunt – niece, assuming non-inbred females. Below we present the IBD probabilities associated with these pedigrees, as well as with unrelated X-chromosomal transmission.

Once the IBD probabilities are established we just have to substitute those parameters into the formulas of Table 1 to obtain the joint genotypic probabilities:

Genotypes	Joint genotypic proba non-inbred females	bilities for X-markers a	nd
	Paternal half-sisters	Paternal aunt-niece	Unrelated
A,A, A,A,	f ³	$1/2f_i^3 + 1/2f_i^4$	fi ⁴
A,A, A,A,	0	$1/2f_i^2f_i^2$	f ² f ²
A,A, AA	$f_i^2 f_i$	$1/2f_i^2f_i + f_i^3f_i$	2 fi ³ fi
A,A, A,A,	$f_i^2 f_i$	$1/2f_i^2f_i + f_i^3f_i$	$2f_i^3 f_i$
A,A, AAk	0	$f_i^2 f_j f_k$	$2f_i^2f_jf_j$
AA AA	0	$f_i^2 f_j f_k$	$2f_i^2f_jf_j$
A,A, A,A,	$f_i f_i (f_i + f_i)$	$1/2f_if_i(f_i + f_i) + 2f_i^2f_i^2$	4f ² f ²
A,A, AAk	f.f.f.k	$1/2f_if_jf_k + 2f_i^2f_jf_k$	$4f_i^2f_jf_k$
A,A, A,A,	0	21,1,1,1,1	41,1,1,1,1

Home Content	Software and Kits	Manage
Marker Haplotypes	Software and databases suitable for ChrX markers	Manage access News
Evaluate & Calculate Submit Data	FamLinkX	Based on the review of
Software and Kits Literature Links	The software FamLinkX provides functions for likelihood calculation on family relationships/pedigrees using linked DNA marker data located on the ChrX. FamLinkX is a freely available software, accessible via http://www.FamLink.se. The software was developed by Daniel Kling, Andreas Tillmar, Thore Egeland and Petter Mostad [1, 2].	december 2018, it has been decided in cooperation with the X working group to remove the PI calculation from this website
	The statistical tool FamLinkX can be used for the interpretation of clusters of linked markers located on the X chromosome. It requires haplotype frequencies and can model mutations and recombinations within a cluster. The main function is to calculate case specific likelihood ratios (LR) with observed DNA-data for X-chromosomal markers. The software provides an easy-to-use graphical user interface for Windows systems.	auslituno
	[1] Kling D, Tillmar A, Egeland T, Mostad P. A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations. Int J Legal Med. 2015 Sep;129(5):943-54.	qualitype
	[2] Kling D, Dell'Amico B, Tillmar AO. FamLinkX - implementation of a general model for likelihood computations for X-chromosomal marker data. Forensic Sci Int Genet. 2015 Jul;17:1-7.	
	GenoProof® Suite	
	GenoProof® Suite is a professional all-in-one solution for DNA analysis in the field of forensic molecular genetics. The application allows you to put together an individual solution taylored to your needs by selecting special expert modules and to expand it later if required.	
	The kinship module supports the entire kinship investigation process, from genotyping samples to performing biostatistical calculations and generating reports.	
	The software determines all important parameters for standard trio and duo constellations and even for unusual scenarios like	

Merlin

University of Michigan | School of Public Health | Abecasis Lab

MINX: Chromosome X Analyses

MINX (MERLIN in X) is an X-specific version of Merlin. It is available in distributions of MERLIN version 0.9.1 and later. There is currently no manuscript describing MINX performance and algorithms in detail. Although I believe MINX results to be correct, the methods are unpublished and I would advise using with care.

MINX implements X-chromosome specific versions of the functions provided by the standard Merlin implementation. Males are hemizogous and carry only one X chromosome.

D:\>merlin.exe -d markers.dat -m markers.map -f markers.freq -p pedigree.ped --lik --perFamily > results.txt

GenoProof

FamLinkX

- >Windows software (can be run on Macs etc)
- ≻Written in C++
- >Works on any marker kit for the X-chromosome
- Developed for the Argus X12 kit (But works just as well with Decaplex or SNPs!)
- >Any relationships (e.g. several typed)
- ➤Has a single parameter that the user needs to set

> Algorithm

Home > International Journal of Legal Medicine > Article

A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations

Original Article | Published: 26 November 2014 Volume 129, pages 943-954, (2015) Cite this article

Access provided by National Library of Sweden (Kungliga Biblioteket)

Daniel Kling 🔄, Andreas Tillmar, Thore Egeland & Petter Mostad

a 1088 Accesses a 24 Citations ↔ 6 Altmetric Explore all metrics →

Abstract

Several applications necessitate an unbiased determination of relatedness, be it in linkage or association studies or in a forensic setting. An appropriate model to compute the joint probability of some genetic data for a set of persons given some hypothesis about the pedigree structure is then required. The increasing number of markers available through high-density SNP microarray typing and NGS technologies intensifies the demand, where using a large number of markers may lead to biased results due to strong dependencies between closely located loci, both within pedigrees (linkage) and in the population (allelic association or linkage disequilibrium (LD)). We present a new general model, based on a Markov chain for inheritance patterns and another Markov chain for founder allele patterns, the latter allowing us to account for LD. We also demonstrate a specific implementation for X chromosomal markers that allows for computation of likelihoods based on hypotheses of alleged relationships and genetic marker data. The algorithm can simultaneously account for linkage, LD, and mutations. We demonstrate its feasibility using simulated examples. The algorithm is implemented in the software FamLinkX.

Follows some basic steps (similar to most forensic genetic software)

- 1. Define frequency data (and other parameters)
 - a) Alleles and frequencies
 - b) Haplotypes
 - c) Mutation parameters (rates etc)
 - d) Advanced settings
- 2. Specify pedigree (hypotheses)
 - a) Main hypothesis (e.g. Full siblings)
 - b) Alternative hypotheses
- 3. Define case-specific DNA data (STR or SNP data)
- 4. Compute LR (Different methods)

Define frequency database (Haplotypes if necessary)

dit clusters/ma	arkers			:
Database nam	e: Norwegian_X1	12		.
Cluster	Chromosome	Number of markers	Number of haplotyp	Cluster
Cluster 1	Х	3	367	Add
Cluster2	X	3	220	Edit
Cluster 4	X	3	301	Remove
				Import
				Export
			I	
				Options
				Close

16

Argus X12

Define frequency database (Haplotypes if necessary)

dit clusters/ma	rkers			×
Database name	: Argentina_deo	caplex		- ·
Cluster	Chromosome	Number of markers	Number of haplotyp	Cluster
DXS8378	х	1	0	Add
DXS9902	Х	1	0	Edit
DXS7132	Х	1	0	Luic
DXS9898	Х	1	0	Remove
DXS6809	Х	1	0	
DXS6809	Х	1	0	Import
DXS7133	Х	1	0	
GATA172D05	X	1	0	Export
GATA31E08	X	1	0	
DXS7423	X	1	0	
				Options
				Options
		î	-	Close

Decaplex

Define frequency database (Haplotypes if necessary)

Edit cluster: Cluster1

Allele system	s		- Actions	Observ	ed haplotypes			Actions
System	Number of al	Position (cM)	Actions	Name	e Counts	DXS10148	DXS10135	Actions
DXS10148	22	10.000000	Add	1	1	13.3	33.2	Add
DXS10135	30	11.123000	E la	2	2	14	21	E IN
DXS8378	6	11.263000	Edit	3	1	14	22	Edit
				4	1	14	26	Demous
			Remove	5	1	14	32	Remove
			Treat	6	1	17	27	Deres all
			Import	7	2	18	18	Remove all
				8	2	18	18	Landada
			Export	9	1	18	18	Lambda
				10	1	18	18	1
				11	1	18	18.1	,
Seneral				12	1	18	19	
Cluster name	Chromos	ome		13	2	18	19	
			Close	14	2	18	19	Estimate
Cluster 1	X	-	CIUSE					frequency

18

 \times

Define frequency database (Haplotypes if necessary)

	,	_
Name	Frequency	Edit
13.3	0.00153374	
14	0.00766871	Remove
17	0.00153374	- Kelliove
18	0.138037	
19	0.0260736	Mutation
20	0.00613497	
21	0.00306748	
21.1	0.00306748	
22.1	0.0153374	
23	0.0306748	
23.1	0.0613497	
		Close

Frequency data import format

Allele frequency matrix

7	0,00000	0,00000	0,00000	0,00000
8	0,00000	0,00000	0,00641	0,00000
9	0,00000	0,00000	0,00641	0,00000
10	0,00000	0,00000	0,29487	0,00870
11	0,00000	0,00000	0,36538	0,03478
12	0,00000	0,00000	0,28205	0,12174
13	0,00000	0,00000	0,04487	0,26087
13.3	0,00641	0,00000	0,00000	0,00000
14	0,00000	0,00000	0,00000	0,31304
15	0,00000	0,00641	0,00000	0,18261

ALLELES DXS10148 DXS10135 DXS8378 DXS7132

Frequency data import format

Allele frequency

DXS8378	
10	0.425925925925926
11	0.296296296296296
12	0.259259259259259
13	0.0185185185185185

DXS9898

8.3	0.0740740740740741
10	0.0185185185185185
11	0.0555555555555555
12	0.3333333333333333333
13	0.407407407407407
14	0.1111111111111111

DXS7133

9	0.5
10	0.22222222222222222
11	0.203703703703704
12	0.0740740740740741

Frequency data import format

Haplotypes

Haplotype	DXS10148	DXS10135	DXS8378	Count
Germa1	13.3	28	12.0	1
Germa2	13.3	29	12.0	1
Germa3	14	27	12.0	1
Germa4	16	22.1	10.0	1
Germa5	16.1	27	10.0	1
Germa6	17	27	12.0	1
Germa7	18	18	11.0	1
Germa8	18	27	11.0	1
Germa9	18	27	11.0	1
Germa10	18	27	11.0	1
Germa11	18	27	12.0	1

Specify hypotheses

Standard set of pedigrees

Total of 50

Full model

Tools Help				
elect basic hypothe	sis (Only one pedig	iree)		
	Ø		OTZ D	Create/Edit pedigree
Duo (Maternity)	Duo (Paternity)	Trio	Unrelated (Duo)	Display full image
	ZTZTZ	ØTATO	UTA RIA O O	Import ped file
Full Siblings	Half Siblings (Maternal)	Half Siblings (Paternal)	Unrelated	
Full Siblings (Data mother)	Half Siblings (Data mothers)	Unrelated (Data mothers)	Grandmother	
Grandmother	Aunt/Uncle	Aunt/Uncle	Aunt/Uncle	*
		Close		Next ->

Specify hypotheses

Two typed individuals

Specify hypotheses

Three typed individuals

> Specify hypotheses

Genders can be changed in most pedigrees!

Select alternative hypotheses 1 Displa Duo (Maternity) Duo (Paternity) Half Siblings Half Siblings (Maternal) (Paternal) d d d d Grandmother Aunt/Unde Aunt/Unde Unrelated (Maternal) ØnØ. 6.o.d ற்ற். Maternal Cousins Maternal Cousins Paternal Cousins Maternal Paternal halfSi... Maternal half... Grandparent ZTOTZ ØHZ 0 Ø727Ø 740 0 <- Prev Close

26

Cr

Specify hypotheses

Genders can be changed in most pedigrees!

Specify hypotheses

Genders can be changed in most pedigrees!

Not in all!

Import case-related DNA data

Add DNA data Basic hypothesis [Half siblings (Paternal) (Data mother)] Edit DNA data DNA data 2. NN Ŧ Cluster 1 DXS10148: 19, 25.1 Name DXS10135: 20.1, 24 NN. DXS8378: 10, 12 Gender Cluster2 Female DXS7132: 12, 15 C Male DXS10079: 19, 20 Cluster DXS10074: 8, 16.3 Cluster3 -DXS10103: 18, 20 HPRTB: 11, 14 Marker DXS10101: 30.2, 31 3 $\overline{\mathbf{w}}$ 2 Cluster4 DVS10146+24_31 Alleles Compare data Import data <- Prev Close Next ->

Main hypothesis

Individuals DNA data

Import case-related DNA data

Import format for case-specific DNA data

	"Fami	lias-	like"	format
--	-------	-------	-------	--------

Sample name:	Ameloger	Ameloger	DXS10148	DXS10148	DXS10135	DXS10135	DXS8378 1	DXS8378
Mother	Х	Х	22.1	27.1	24	25	10	1
Child	х	х	25.1	27.1	24	25	11	1

xml (CODIS-like) format

Genemapper-like format

Import format for case-specific DNA data

"Familias-like" format

xml (CODIS-like) format

Genemapper-like format

<?xml version="1.0" encoding="UTF-8"?> <CODISImportFile xmlns="urn:CODISImportFile-schema"> <SPECIMEN> <SPECIMENID>Mother</SPECIMENID> <SPECIMENCATEGORY>Mother</SPECIMENCATEGORY> <SPECIMENNATIONALITY>Europe</SPECIMENNATIONALITY> <LOCUS> <LOCUSNAME>Amelogenin</LOCUSNAME> <ALLELE> <ALLELEVALUE>X</ALLELEVALUE> <ALLELEHEIGHT>2958</ALLELEHEIGHT> </ALLELE> <ALLELE> <ALLELEVALUE>X</ALLELEVALUE> </ALLELE> </LOCUS> <LOCUS> <LOCUSNAME>DXS10103</LOCUSNAME> <ALLELE> <ALLELEVALUE>16</ALLELEVALUE> <ALLELEHEIGHT>866</ALLELEHEIGHT> </ALLELE> <ALLELE> <ALLELEVALUE>19</ALLELEVALUE> <ALLELEHEIGHT>750</ALLELEHEIGHT> </ALLELE> </LOCUS> <LOCUS> <LOCUSNAME>DXS8378</LOCUSNAME> <ALLELE> <ALLELEVALUE>11</ALLELEVALUE> <ALLELEHEIGHT>1368</ALLELEHEIGHT> </ALLELE> <ALLELE> <ALLELEVALUE>12</ALLELEVALUE> <ALLELEHEIGHT>1274</ALLELEHEIGHT> </ALLELE>

32

</LOCUS>

Import format for case-specific DNA data

"Familias-like" format

xml (CODIS-like) format

Genemapper-like format

Sample	Marker	Allele 1	Allele 2
Mother	DXS10135	14	16
Mother	DXS7123	20	23

FamLinkX ≻Calculate LR

|--|

Three different methods to compute LR (more later)

➤Calculate LR

Marker	Accumulated LR	Marginal LR	1. NN	2. NN	Actions
New cluster					
Locus1	15	15	12, 12	12, 12	Calculate
Locus2	1267.86	84.5238	20, 20	20, 20	
					Simulate
					Options
					LR/Posterior
					Scale
					Set prior
					View results
					Save results

Individual marker LRs

FamLinkX – Basics

DEMONSTRATION 1

Demonstration

LR=1/2p₁₂ * 1/2p₂₀=5*5=<u>25</u>

Marker	Position (cM)	Alleles	Frequencies
DXS10148	19.84	12, 14	0.1, 0.9
DXS10135	20.03	20, 21	0.1, 0.9

ADVANCED TOPICS

Standard set of pedigrees

		,		
0_72	ØŢŪ	1_2	OTZ p	Create/Edit
2	2	3	۰	pedigree
Duo (Maternity)	Duo (Paternity)	Trio	Unrelated (Duo)	Display full image
				=
Øtt	Øtøtø	ØtBtØ		Import ped file
12				
Full Siblings	Half Siblings	Half Siblings	Unrelated	
-	(Maternal)	(Paternal)		
0Z			Ø _T O	
20			ØŢŹ	
Full Siblings	Half Siblings	Unrelated	Grandmother	
(Data mother)	(Data mothers)	(Data mothers)		
⊠⊤0	Ø _{T T} Ø	Ø _{T-T} Ø	Ø _T -TØ	
OTZ	ØTZO	0 _T ZO	Z _T Ø⊙	
Cron draath ar	Aunt/Unclo	Aunt/Unclo	Aunt/Unclo	-

39

41

Creating pedigrees in FamLinkX

e Tools Help elect basic hypothe	sis (Only one pedig	ree)			2
1 2 Duo (Maternity)	Duo (Paternity)	1 2 3 Trio	া⊤্য । ত	C	reate/Edit pedigree ay full image
Full Sible	ication Iculations for create combinations within	d pedigrees will r clusters!	not account for muta	tions and	rt ped file
2 3 Full Siblin				ОК	
					-

Created pedigrees will use Merlin for computations and <u>mutations will not be</u> <u>considered</u>!

We first need to define the persons involved

2 untyped parents 3 typed children

Next identify relations

6 relations in total

45

Creating pedigrees in FamLinkX

		Add persons			`	
27	n1	Name	Gender	Remove	in	nage
9	Parent	Father	Male		nove _	fla
NO E		Mother	Female	Edit		me
ne H		Sibling1	Female		dit	_
		Sibling2	Female		- La Mariana	
ar		Sibling3	Female		elations	
T					sons	
0					30113	
Two					in R	
half				Close		
		Add person				
~		Name	Gender		ose	
5	- Add rela	Traine .	U Male	Add		
	Addreid		Female		1	
aterr	Select r				dd	

uni	Edit pedigree		>	e e
Zh	H1			imag
٢	Parent	Child	Remove	
Two Fi One H	Father Father	Sibling 1 Sibling 2	Edit	iu nie
~	Father	Sibling3 Sibling1	Copy relations	
ØT.	Mother	Sibling2 Sibling3	Persons	
Two	Houle	Sidiligo	Plot in R	
half				
an			Close	
~0	Add relation			
Paterr	Select parent	 Select child 	▼ Add	

Persons

Select alternative hypotheses		X	
		Create/Edit pedigree Display full image	Create alternative pedigree
<- Prev	Close	Next ->	

Edit pedigree	×	
H2		
Parent Child	Remove	
	Edit	
	Copy relations	
		Convall relations from first
	Persons	Copy an relations from first
Add relation Select parent Select child	Add	pedigree (H1)

Edit pedigree		×	
H2 Parent	Child	Remove	
Father	Sibling 1 Sibling 2	Edit	
Father Mother	Sibling3 Sibling1	Copy relations	
Mother Mother	Sibling2 Sibling3	Persons	Convoll relations from first
		Plot in R	
		Close	
Add relation Select parent	Select child	Add	

Add DNA data		×
Basic hypothesis [H1]	Edit DNA data Select person Name Import options Import person Name: F1 Import to Import to Import name Import Skip Alleles	DNA data
<- Prev	Close Import data	Next ->

No illustration! (More later)

hypothesis [H1]					-	
Trypotresis [TT]	Marker	3. F1	4. F2	5. F3		DNA data
	Cluster 1				-	
	DXS10148	25.1, 27.1	25.1, 27.1	25.1, 26.1		
	DXS10135	23, 24	23, 24	22, 23		
	DXS8378	10, 11	10, 11	10, 11		
	Cluster 2					
	DXS7132	15, 15	15, 15	15, 15	nale	
	DXS10079	16, 17	16, 17	16, 17		
	DXS10074	8, 16	8, 16	8, 16		
	Cluster3				-	
	DXS10103	20, 20	17, 20	17, 20		
	HPRTB	12, 16	14, 16	14, 16		
	DXS10101	30.2, 32	31, 32	31, 32		
	Cluster 4				<u> </u>	
	DXS10146	27, 27	26, 27	26, 27		
	DXS10134	34, 36	34, 36	34, 36		1
	DXS7423	16, 16	14, 16	14, 16	-	
	Gender	Male	Male	Male		Compare data
Bray	Save	Close	1			Next

We should use LR (Cluster)

Results			\times
Created ped H1 LR (EVact): N/A LR (Cluster): 2.49907e+011 LR (LE): 9.54148e+008	Created ped H2 Scale	Actions Calculate Simulate Options LR/Posterior Scale Set prior View results Save results	
<- Prev	Close		

Why does the LR become 0? (or infinity)

- Check pedigree (possible errors)
- Check genders of all persons
- Check for potential mutations
- >Advanced users may check the temporary output from Merlin via
- C:\Program files (x86)\FamLinkX\temp\tempResults.txt

Plotting in FamLinkX

Similar as in Familias – requires R

➢Available since version 2.8

	-				e
H1					image
Pare	nt	Child		Remove	d filo
G		A		Edit	ume
G		В		Luit	
G		С		Copy relations	
G		D			
G		Sister		Persons	
F		В			
F		С		Plot in R 🗧	
F		D			
F		Sister			
Siste	r	E		1	
F		A		Close	
Add	relation				1
Sel	ect parent	 Select child 	-	Add	

54

Plotting in FamLinkX

R Graphics: Device 2 (ACTIVE)

Fext	\times
The following text may be copied into R to plot the pedigree	
# Start the Familias package foo = library(Familias, logical.return=TRUE) if((foo) { foo2 = FALSE install.packages("Familias"); foo2 = library(Familias, logical.return=T);	Â
} #Define the persons involved in the case persons <- c("6", "F", "C", "D", "E", "A", "Sister", "B") sex <- c("Female", "Male", "Female", "Female", "Female", "Male", "Male", "Male", "Male") #Define the pedigree ped1 <- FamiliasPedigree(id=persons, dadid=c(NA,NA,"G","G","G",NA,"G","G","G"), momid=	
pedigrees <- list(ped 1) plot(ped 1, affected=c(1,1,1,1,1,1,1,0), mar = c(4.1, 4, 4.1, 4), cex=0.9, angle=45, <	~
Save Close	

55

Plotting in FamLinkX

Once plotted, it can be viewed in FamLinkX and automatically inserted into report!

FamLinkX – Creating pedigrees and plotting

DEMONSTRATION 2

Demonstration

UNDERSTANDING THE RESULTS

FamLinkX computes three different LRs

- 1. LR (Exact) Uses the published method in Kling et al.
- 2. LR (Cluster) Uses the cluster function in Merlin
- 3. LR (LE) Considers the LE model in Merlin (linkage still modelled!)

Why do we present all?

FamLinkX computes three different LRs

- 1. LR (Exact) Uses the published method in Kling et al.
- 2. LR (Cluster) Uses the cluster function in Merlin
- 3. LR (LE) Considers the LE model in Merlin (linkage still modelled!)

Why do we present all?
 a) Validation purposes
 b) 2 and 3 only available for created peds

Comparison

	LR (Exact)	LR (Cluster)	LR (LE)	LR (Single marker)
Linkage	Yes	Yes	Yes	No
LD (Haplotypes)	Yes	Yes	No	No
Mutations	Yes	No	No	No
Recombinations within clusters	Yes	No	Yes	NA
Lambda model	Yes	Yes	No	No

- >LR (Cluster) will, in many cases, gives similar results as the LR (Exact)
- LR (LE) will give the same results as the other two when lambda approaches infinity or for Decaplex and similar kits
- If mutations -> Only LR (Exact) will give results
- If recombinations within clusters are necessary -> LR (Exact) and LR (LE) will give results
- > If created pedigrees -> Only LR (Cluster) and LR (LE) will give results

ADVANCED SETTINGS

lvanced settings				:
Pedigree	Threshold	Steps	^	Create
Duo (Maternity)	0.001	0		
Duo (Paternity)	0.001	0		Edit
Trio	0.001	0		
Unrelated (Duo)	0.001	0		Close
Full Siblings	0.001	0		
Half Siblings (Maternal)	0.001	0		Display
Half Siblings (Paternal)	0.001	0		Image
Unrelated	0.001	0		
Full Siblings (Data mother)	0.001	0		
Half Siblings (Data mothers)	0.001	0		
Unrelated (Data mothers)	0.001	0		
Grandmother	0.001	0		
Grandmother (Data mother)	0.001	0		
Aunt/Uncle	0.001	0	~	
Settings				
Thre	eshold			
Step	os (Transitions)			
I		Opd	ate	

Lists all pre-defined pedigrees

Two parameters

Threshold – Decides what likelihoods should be computed. Steps – Decides what alleles should be included in the likelihood calculations, ref. stepwise mutation model

➤Example 1

Threshold=0.1, Steps=0

Since steps=0, shared father must have one of the alleles of the daughters. Threshold is high thus discarding low likelihoods, i.e. two step mutations.

Threshold=0.000001, Steps=1

Since steps=1, shared father can be 13/13. Threshold allows low likelihoods corresponding to two step mutations as well as double mutations.

LR=0

➤Example 2

Threshold=0.001, Steps=0

View data (Beta)

 \sim

Marker	Accumulated LR	Marginal LR	Single mark
KG1			
DXS10148	1.96658	1.96658	
DXS10135	7.95526	4.04521	
DXS8378	25.5163	3.20747	
KG2			
DXS7132	59.5996	2.33575	
DXS10079	221.873	3.72273	
DXS10074	1448.59	6.5289	
KG3			
DXS10103	3403.55	2.34956	
HPRT	6222.76	1.82832	
DXS10101	0	0	
KG4			
DXS10146	0	-1.#IND	
DXS10134	0	-1.#IND	
DXS7423	0	-1.#IND	
	0	-1. #IND	1.59541e+
Save	Close		

Threshold=0.00001, Steps=0

Marker	Accumulated LR	Marginal LR	Single mark
KG1			
DXS10148	1.97093	1.97093	
DXS10135	7.96409	4.04078	
DXS8378	25.5253	3.20505	
KG2			
DXS7132	59.7143	2.33942	
DXS10079	222.298	3.7227	
DXS10074	1451.48	6.52943	
KG3			
DXS10103	3410.35	2.34956	
HPRT	6244.7	1.8311	
DXS10101	20.0605	0.0032124	
KG4			
DXS10146	27.7779	1.38471	
DXS10134	121.174	4.36225	
DXS7423	323.422	2.66907	
	323.422	323.422	1.59541e+

- Keep the steps parameter at zero. Higher values will slow down computations.
- Use a threshold of 0.00001 thus allowing single step mutations.
- Both should be same for all pedigrees and fixed in database. Can be changed if necessary.
- Works on individual markers -> threshold does not have to be extremely low if mutations in different markers.

Other topics (covered later)

- Haplotype frequency model (Lambda)
- ➢Pseuo-counts
- Estimating Lambda from data
- ➢ Frequency databases etc.

SIMULATIONS

Simulations in FamLinkX

- Similar to Familias
- ➢Gene dropping
- More advanced approach

Simulations – Simple example

A/A	A/B	B/B
0.25	0.5	0.25

Simulations – Full example

Simulations – Output

Simulation	LR (Half sisters)	LR(Unrelated)		
1	1000	0.0001		
2	100	0.02		
3	600	0.1		
4	0.1	0.0000001		
5	10000	1.5		
6	5000	0.01		

Conclusion?

FamLinkX – Simulations

DEMONSTRATION 3

Demonstration

Background

Decaplex data

Simulations in FamLinkX

Simulations in FamLinkX

Results	True pedigree Summary statistics					Save raw L		
	Simulation results - Likelihood ratios							
	True pedigree 🗸	Median	Average	P(LR>1000)	P(LR>10000)	P(LR>1	Save LR	
	Unrelated Half Siblings (Pate	3e-008 3.5e+002	0.33 9.4e+003	0.000000	0.000000	0.00 0.01	Exceedance	
							Method	
							1. Exact 💌	
	<					>	Close	

Simulations wth Argus X12

Paternal half sisters (Histogram of 1000 simulations)

Paternal half siblings can be distinguished from unrelated

Autosomal markers vs Argus X12

Paternal half sisters

Argus X12 versus Decaplex

Paternal half sisters

Argus X12 is more powerful than Decaplex

82

Exceedance plots

84

Utility of simulations (Argus X12)

Probability that we can solve a case with the given threshold

FORCE X-SNPs

242 SNPs (only linkage, no LD)

From Bergseth et al. 2022

Power increased substantially

85

VALIDATION

Unfortunately not open access

- 1. Scientific paper
- 2. Developmental validation with freely available data
- 3. Version control
- 4. Instruction for how to validate (internal validations)
- 5. User manual
- 6. Training and education
- 7. Open source/algorithms
- 8. Updates/bug fixes etc

- 9. Randomness (MCMC etc)
- 10. Plan for internal validation which tests to perform etc
- 11. Test the software on in-house data from real samples
- 12. Samples to include
- 13. Consistent with previous results (e.g. other software)
- 14. Standard operating procedure (SOP)
- 15. In-house training
- 16. Public repository

Unfortunately not open access. Ask us for a copy!

Guidelines for FamLinkX

- 1. Import of data
 - a) Importing frequencies
 - b) Importing haplotypes
 - c) Importing case-specific DNA data (new alleles)
- 2. Test parameters (value of lambda)
- 3. Test all relevant cases (hypotheses/pedigrees)
- 4. Report (output)
- 5. Save/Open projects with same results
- 6. Identify sources/points where errors can arise

Guidelines for FamLinkX

- 7. Create pedigrees
- 8. Training and education

Simulation does not generally need to be validated

Self-validation in FamLinkX

Will test the pre-defined pedigrees through

- I. Two genetic markers (no mutations)
- 2. 100 simulations
- 3. Compare results with Merlin

FamLinkX

DANIEL KLING & ANDREAS TILLMAR

Daniel.kling@rmv.se

Andreas.tillmar@rmv.se

• WORKSHOP 1 X-chromosomal markers in forensic genetics Daviel Kling & Andreas Tillmar

• WORKSHOP 2

Acreditación en el campo de la Genética Forense y estrategias de validación de ensayos Manuel Crespillo Márquez, Rosalía Izquierdo & Estel Eureig Cabanes

• WORKSHOP 3

La genética en la Identificación de víctimas a gran escala: comparación de perfiles y evaluación estadística con Familias Carlos Vullo & Lourdes Prieto