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where p
′
12 and p

′
21 is sloppy notation to indicate that this is the second

time we observe this allele.

b) * The LR equals 2.058

c) ** Fortunately we do not need to concern ourselves with the alleles not
shared between the individuals and therefore, p

′
12 = θ + (1 − θ)p12 and

p
′
21 = θ + (1 − θ)p21 are the only two (updated) frequencies we have to

compute. We may compute the updated frequencies also for the other
alleles, but these will cancel out in the LR.

d) ** LR equals 1.72

e) ** See results in Figure 4.3.

4.2 X-chromosomal markers and FamLinkX

Solution Exercise 4.12.

a) The inheritance patterns are different for male and female meioses. While
males pass on their only X-chromosome unchanged, the two X-chromosomes
for females may recombine.

b) The recombination rate is 0.001 as can be found using Tools -> cM ....

c) In order to account for linkage disequilibrium (association of alleles) we
need to specify haplotype observations.

d) We find

r2 =
(p12p16 − p12,16)2

p12p13p16p17
=

(0.6 · 0.6− 59/100)2

0.6 · 0.4 · 0.6 · 0.4
= 0.918.

which indicates a strong LD between the alleles.

g) LR (Exact)=99.97. Deviation from the theoretical value 100 is a conse-
quence of the fact that λ is not exactly zero. FamLinkX does not allow
the λ to be zero.
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λ LR
0.0001 13.01
0.01 12.98
1 10.69
100 1.50
10000 1.03

Table 4.1: Table of LRs for a number of different λ-s .

h) The LR changes dramatically. It now becomes 0.02 (LR(Exact)=0.21721,
LR(cluster)=0.21709). The explanation is that given H1 and disregarding
mutations, the haplotypes for the child are fixed, while given H2 other
more common haplotypes are more probable. The consequence is that
the likelihood is much lower given H1 as this requires rare haplotypes
for the child. Using a low value on λ we put almost all weight on the
observations. Thus the haplotype observations will be crucial for the
calculation of LR.

i) The answers may change quite a bit depending also on the choice of λ.

j) The degree of LD is extremely high which is evident from the results. It
is also more probable that individuals actually share the most common
haplotypes.

Solution Exercise 4.13.

a) The inheritance patterns differ. Two paternal female half siblings are
obliged to share one allele IBD, whereas for maternal half siblings they
may share one allele IBD with probability 0.5 and zero alleles IBD with
probability 0.5.

d,e) Scaling versus Unrelated we find LR(Full siblings)=5050, LR(Maternal
half siblings)=50.5 and LR(Paternal half siblings)=100. Looking at the
LRs assuming LE, we see that the information in the haplotypes, and the
underestimation of the LR, is great.

Solution Exercise 4.14.

c) The LRs are given in Table 4.1.

d,e) The LR approaches 13 as λ goes to 0 and 1 as λ goes to infinity, which
is the LR when we do not account for haplotype observations. As λ
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λ LR
0.0001 0.8349
0.01 0.8348
1 0.8322
100 0.955
10000 1.270

Table 4.2: Table of LRs (Exact) for a number of different λ-s when the child
is 13/13 for L1.

becomes big the expected haplotype frequencies are given much weight
and dominate the haplotype probability estimates.

f) The LRs are given in Table 4.2. It seems that the value of λ does not
influence the results considerably. Briefly, the explanation is that for H1

we will sum over possible haplotypes for the founders and haplotypes with
few observations and with many observations will be necessary to explain
the data.

Solution Exercise 4.15.

b,c) The most probable relationships are given by

H1 : The three females are all full siblings

H2 : Two females are full siblings and the third (named F3) is a paternal
half sibling

H3 : Two females are full siblings and the third (named F3) is a maternal
half sibling

When generating pedigrees in Familias we need some constraints. Other-
wise the software will generate too many irrelevant pedigrees. Specifying
all the typed females as children will create no pedigrees where they are
parents to each other or other persons. Specifying the untyped persons
as born the same year will create no pedigree where they are parent of
each other.

g) Scaling versus H2 we get an LR in favor of H1 as 1.8e+ 11 and an LR in
favor of H3 as 2.42e + 5. The LR comparing H1 and H3 is 7.44e + 5 in
favor of the former hypothesis.
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λ LR
0.0001 4.9e-7
1 0.006
100 11.34
1000 217.93

Table 4.3: Table of LRs (exact)for a number of different values on λ

h) The final conclusion is that the data provide strong evidence in favor
of the three females being full siblings, also compared to the next most
probable hypotheses, i.e., H3.

Solution Exercise 4.16.

c) The LRs are given in Table 4.3

d) We can conclude that for the range of λ–s considered, we obtain LRs
that range from evidence against relationship to results that provide weak
evidence in favor of relationship.

e) The answer can be found be exploring the frequency estimation tool.
(Hint, found in the Edit cluster dialog.) We must further explore the
hypotheses and see what haplotypes are necessary to explain the data.
Given H1 we see that the females share a common haplotype in each
cluster, i.e., a certain haplotype can be distinguished. These haplotypes
are rare, without any prior observations in the database. Given low values
of λ, little weight will be given to unobserved haplotypes and they will
have low frequencies. As a consequence the likelihood Pr(data | H1) will
be small, while the likelihood under H2 will be higher as other, more
common, haplotypes are more likely. In other words, without knowledge
about the phase of what haplotypes are true under H2, we must sum over
all possible haplotypes.

f) It is indeed difficult to give a conclusion in the current case and to decide
which λ to report. One may say the the evidence is inconclusive. We
should further investigate if we are using an appropriate database, as
the shared haplotype may be common in other populations. Fortunately,
Example 7.4 explains how λ may be estimated.

Solution Exercise 4.17.
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c) LR(Exact) = 5.755e+ 8

d) LR(Exact) = 7.310e+ 6

e) Given that λ equals to 1, LE model we will underestimate the evidence
with a factor of 577/8.89=65. If we, on the other hand, use a λ of 212
(in this case, the size of the database), we get LRs that are close to each
other, i.e., the difference between the model accounting for LD and the
model assuming LE is small.

f) ** See Exercise 4.19

Solution Exercise 4.18.

d) The LR(Cluster) = 4.5e− 5 and the LR(LE) = 1.95

e) Tuning the value on λ, we see that when the value increases, LR(Cluster)
approaches LR(LE).

Solution Exercise 4.19.

a) The LR is computed as

LR =
Pr(1/1) · p2

Pr(1/1) · Pr(1/2)
=

1

2 · 0.4
= 1.25.

b) The LR is computed as

LR =
p1 · p2

p1 · Pr(1/2)
=

1

2 · 0.4
= 1.25.

d) LR = 1.25× 1
0.6

= 2.08333 in favor of paternity.

f) The LRs are given in Table 4.4

g) *The theoretical formula is derived below

LR =
H1,3H2,3

H1,32H2,3H1,3

=
1

2H1,3
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λ LR
0.01 49.89
1 40.73
100 4.00

Table 4.4: Table of exact LRs for different lambda-s.

where H1,3 is the frequency of the haplotype with alleles 1 at L1 and 3
at L2. Using the the formula for haplotype frequency estimation we get
that

LR =
1

2H1,3

=
1

2 · 0.125
= 4.

h) We use that

LR =
1

2H(1, 3)

and (by using the formula for haplotype estimation)

LR =
C + λ

2(ci + piλ)

where C = 100, ci = 1 and pi = 0.4 · 0.6 = 0.24. Plotting functions are
conveniently done in the open source software R, presented in detail in
Chapter 5:

Function <- function(x) (100+x)/(2*(1+0.24*x))

curve(Function, 0, 1000, xlab="lambda",ylab="LR")

title(main="LR as a function of lambda")

grid()

Function(0.01)

Function(1)

Function(100)

Other software may also be used to produce the same plot. Figure 4.4
illustrates LR as a function of different values on λ.
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i) ** The theoretical formula is derived below

LR =
H12,17H12,17

H12,17H2
12,17

=
1

H12,17

=
1

0.01
= 100.

Solution Exercise 4.20.

a) The founder alleles are given by the alleles for the first father, the common
mother and the second father. In total, there are 4 different alleles. The
alleles for the fathers are given by the alleles of the sisters while the
alleles for the mother are given by the alleles of the sisters as well as other
possible alleles. In total, we have 16 different founder alleles sets. These
are given by the sets [12 13 15 12], [12 15 13 12], [12 13 12 15], [12 12 13
15], [13 12 x 15], [13 x 12 15], [13 12 15 12] and [13 15 12 12], where x
represents any of the five possible alleles.

b) There are now a number of possible founder alleles sets, for the fathers
we still consider only the observed alleles, while for the mother we must
consider the possibility of a mutation. The same sets as in a) are still
possible, while in additition several other sets where the mother have
alleles not observed in the two individuals are possible. For instance,
the set [12 14 15 12] is possible, where a one step mutation must have
produced the genotype for F1.

We can use that for the sets [12 x y 12], [12 x y 15], [13 x y 15] and
[13 x y 12] all values on x and y are possible with the exceptions that in
the first case both cannot be 12, 13, 15 or 16 and combinations 12/13,
15/16 are not possible either; in the second case both cannot be 14, 15
or 16 and combinations 14/15, 14/16, 15/16 are not possible; in the third
case both cannot be 14, 15 or 16 and combinations 14/15, 14/16, 15/16
are not possible; in the last case both cannot be 12, 13, 14, 15 or 16
and combinations 12/13, 14/15, 14/16, 15/16 are not possible. There are
in total 100 different possible sets, if we subtract the sets that are not
possible we get in total 100-27=73 different founder allele sets.

c) There are two meioses to account for, the two from the common mother
to the two sisters.

d) There are 16 · 2 = 32 different combinations to consider.

e) There are 16 · 2 · 2 = 64 different combinations to consider for the second
marker
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f) There are 16 · 2 · 2 · 16 = 1024 different combinations to consider for the
second marker

g) There are 16 · 2 · 2 · 16 · 16 = 16, 384 different combinations to consider for
the third marker

h) The unrelated persons can be treated separately and we have that the
number of possible founder allele states for the combination of the three
markers are given by the total number of different haplotype setups. In
other words, there are 2 · 23 = 16 different combinations to consider for
the third marker given H2. Linkage/recombination is not a topic for
unrelated individuals. Consider H1, linkage has a minor effect in the
current case, but given that many meioses are introduced, the number of
computations will grow considerably. The main contributor to the number
of different computations given H1 is the possible founder alleles sets we
must consider.

Solution Exercise 4.21.

d) The LR becomes 0.075, i.e. the data given the paternal half sibling
relation is 1/0.075=13 times more probable.

f) The LR becomes 2.28 and the data therefore indicate that the maternal
half sibling relation is twice as probable.

g) The LR becomes 0.21.

i) The LR in e) now becomes 0.47 while the LR in g) becomes 0.09

j) As we scale against the pedigree where the genetic inconsistency can
be detected, i.e., paternal half siblings, the LR can be high given an
“inappropriate” mutation model is selected. It should be noted that by
swapping the hypotheses in LR formula, we would get an equally low
LR. However, it is important to keep in mind that given the current
example, how we model mutations is crucial to the conclusion.

Solution Exercise 4.22.

c) The LR becomes zero for all computation models.

d) A possible mutation is present at the marker DXS10101. A hint is to view
and compare the data for both individuals in the Add DNA data window.
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f) LR(Exact) = 6.9e+ 007, the other computation models still yield an LR
of zero as these do no consider mutations.

g) LR(Exact) = 6.3e+ 007,

h) When we lower the value on the parameter, more“extreme” scenarios are
considered, like double mutations etc, which individually provide a low
likelihood but together contribute to the overall sum.

i) Same results as in g).

j) Again, same results as in g).

k) LR(Step=2 )=119,793; LR(Step=1 )=119,436; LR(Step=0 )=117,957. It
seems that whether the Step parameter is 1 or 2 only has a minor effect
on the results, while lowering it to zero has a, in comparison, larger effect.
However, the change may be considered as small compared to the large
LRs.

l) The effect of the Step parameter is smaller unless two mutations are
needed to explain the data. In the current case setting the step parameter
to zero indicates that the common father under H1 cannot possess any
alleles other than the ones observed in the data. This restriction prohibits
him from having some alleles.
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Figure 4.1: LR as a function of the recombination rate
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Figure 4.2: Results for Exercise 4.10
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Figure 4.3: Results for Exercise 4.11 e)
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Figure 4.4: Plot of LR versus different values on λ.
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