

Case examples and advanced topics

DANIEL KLING & ANDREAS TILLMAR

Daniel.kling@rmv.se

Andreas.tillmar@rmv.se

• WORKSHOP 1 X-chromosomal markers in forensic genetics

Daniel Kling & Andreas Tillmar

• WORKSHOP 2

Acreditación en el campo de la Genética Forense y estrategias de validación de ensayos Wanuel Crespillo Wárquez, Rosalía Izquierdo & Estel Eureia Cabanes

• WORKSHOP 3

La genética en la Identificación de víctimas a gran escala: comparación de perfiles y evaluación estadística con Familias Carlos Vullo & Lourdes Prieto

Teachers

Daniel Kling, PhD

- Forensic Expert
- National Board of Forensic Medicine, Sweden
- Worked in the field for almost 15 years
- Developer of Familias, FamLink and FamLinkX
- Applied biostatistics, relationship inference, genetic genealogy

Andreas Tillmar, PhD

- Forensic geneticist & Associate professor
- National Board of Forensic Medicine, Sweden and Linköping University, Sweden
- Worked in the field for almost 20 years
- Technical leadership mixed with R&D
- Applied biostatistics, relationship inference, population genetics, genetic genealogy

Disclaimer!

Points of view are those of the presenters and do not necessarily represent the official position or policies of the National Board of Forensic Medicine or ISFG. Certain commercial software, instruments, and materials are identified in order to specify experimental procedures as completely as possible. In no case does such identification imply a recommendation or endorsement, nor does it imply that any of the materials, instruments, or equipment identified are necessarily the best available for the purpose.

Topics

- 1. Case examples
- 2. Pseudo-counts
- 3. Anepleudies
- 4. SNPs and expanded marker panels (Simulations)

Case examples

Curious cases of X

See <u>https://link.springer.com/article/10.1007/s00414-017-1612-8</u> for further cases!

H1: Paternal half sisters H2: Unrelated

H1: Paternal half sisters H2: Unrelated

 $LR = f_{14}^{3}/...$

H1: Paternal half sisters H2: Unrelated

Conclusion: If 14 is rare, the LR is high

H1: Paternal half sisters H2: Unrelated

 $LR_{LE} = 1/f_{14} * 1/f_{20}$ $LR_{LD} = 1/f_{14}_{20}$

H1: Paternal half sisters H2: Unrelated

 $LR_{LE} = 1/4f_{14}^{*}1/4f_{20}$ $LR_{LD} = ???$

$$LR_{LD} = f_{14_{20}} f_{15_{21}} f_{16_{22}} / \dots$$

H1: Paternal half sisters H2: Unrelated

H1: Paternal half sisters H2: Unrelated

H1: Paternal half sisters H2: Unrelated

Conclusion: Since the phase (haplotypes) is not certain, we need to add both possibilities

H1: Paternal half sisters H2: Unrelated

 $LR_{1F} = 1/4f_{14} * 1/4f_{20}$ LR_{ID}=???

Assumption: 14_20 is rare, 15_20 and 16_20 are common

H1: Paternal half sisters H2: Unrelated

 $LR_{LD} = f_{14_{20}} * f_{15_{21}} * f_{16_{22}} / [(2f_{14_{21}}f_{15_{20}}) * (2f_{16_{20}}f_{14_{22}})]$

What happens if 14_20 is extremely rare???

H1: Paternal half sisters H2: Unrelated

Table 2. Genotype data for three STR markers located in LG2 of the Argus X12 kit.

Marker	G1	G2
DXS7132	12,13	13,14
DXS10079	19,19	18,19
DXS10074	14,18	18,18

Recent progress in forensic genetics has introduced a number of closely located short tandem repeat (STR) markers on the X chromosome. Inevitably, dependencies arise that have to be accounted for. This paper will in detail explore the complex statistical interpretation of X-chromosomal STR markers, focusing on likelihood calculations. Specifically, we will investigate how the phase uncertainty of haplotypes comes into play in the statistical evaluations and what curious effects this phenomenon can have. The starting point is the different real cases where the weight of evidence has provided

H1: Paternal half sisters (genotypes G1 and G2)

H2: Unrelated

Interpretation: LR switches from below 1 to above at lambda=10.

Answer lies in the combination of rare shared paternal haplotype and phase uncertainty

H1: Paternal half sisters (genotypes G1 and G2) H2: Unrelated

How often does it happen??

We simulate data in an extended Northern European (NEU) database, N=2624

Compute LR using a smaller Norwegian (NOR) Database, N=631.

H1: Paternal half sisters (genotypes G1 and G2) H2: Unrelated

How often does it happen??

We simulate data in an extended Northern European (NEU) database, N=2624

Compute LR using a smaller Norwegian (NOR) Database, N=631.

H1: Two females are full sistersH2: The two females are maternal half sisters

Curious case of X (2)

Curious case of X (2)

Curious case of X (2)

Marker	G1	G2		
DXS10148	14,19	19,24.1		
DXS10135	21,21	20,21		
DXS8378	10,13	13,13		
			No mutations	Paternal haplotype requires a single mutation
$R = \frac{L_1}{L_2} = \frac{L_2}{L_2}$	0.5[(1	$(-\mu)^6 F_1$	$_{9,21,13}F_{14,21,10}F_{24.1,20,13}$	$-0.5\mu(1-\mu)^{5}F_{19,20,13}F_{14,21,10}F_{24,1,21,13}$

Curious case of X (2)

Marker	G1	G2
DXS10148	14,19	19,24.1
DXS10135	21,21	20,21
DXS8378	10,13	13,13

$$LR = \frac{L_{1}}{L_{2}} = \frac{0.5 \left[(1-\mu)^{6} F_{19,21,13} F_{14,21,10} F_{24,1,20,13} + 0.5 \mu (1-\mu)^{5} F_{19,20,13} F_{14,21,10} F_{24,1,21,13} \right]}{F_{14,21,10} F_{19,21,13} \left[F_{24,1,20,13} + \left(2F_{19,20,13} F_{24,1,21,13} + 2F_{19,21,13} F_{24,1,20,13} \right) \right]}{+F_{14,21,13} F_{19,21,10} \left[\left(2F_{19,20,13} F_{24,1,21,13} + 2F_{19,21,13} F_{24,1,20,13} \right) \right]}$$

Maternal half sisters

Interpretation: LR depends on mutation rate and behaves differently depending on lambda

λ

Real example from a paternity case

Marker	Alleged father	Child	
DXS7132	14	14/14	
DXS10079	20	15/21	Possible mutation
DXS10103	16	16/18	

32

Real example from a paternity case

Marker	Alleged father	Child	
DXS7132	14	14/14	
DXS10079	20	15/21	Possible mutation
DXS10103	16	16/18	

$$LR = \frac{L_1}{L_2} = \frac{F_{14,20,16}\mu(20 > 21)[]}{F_{14,20,16}[]}$$

Paternal haplotype will "cancel out"

Real example from a paternity case

Marker	Alleged father	Child	
DXS7132	14	14/14	
DXS10079	20	15/21	Possible mutation
DXS10103	16	16/18	

$$LR = \frac{L_1}{L_2} = \frac{F_{14,20,16}\mu(20 > 21)[]}{F_{14,20,16}[]}$$

Paternal haplotype will "cancel out"

Real example from a paternity case

Marker	Alleged father	Child
DXS7132	14	14/14
DXS10079	20	15/21
DXS10103	16	16/18

$$LR = \frac{L_{1}}{L_{2}} = \frac{\mu(20 > 21) \left[F_{14,15,18} + F_{14,15,16} \right]}{\left[2F_{14,21,16}F_{14,15,18} + 2F_{14,21,18}F_{14,15,16} \right]}$$

Two alternative haplotype setups for the child

Haplotype	Observations in Sweden	Observations in Spain
[14 20 16]	14	0
[14 21 16]	6	1
[14 15 18]	0	1
[14 21 18]	6	1
[14 15 16]	5	0

35

Real example from a paternity case

Marker	Alleged father	Child
DXS7132	14	14/14
DXS10079	20	15/21
DXS10103	16	16/18

$$LR_{swe} = \frac{\mu(20 > 21)F_{14,15,16}}{2F_{14,21,18}F_{14,15,16}} \approx \frac{\mu(20 > 21)}{2F_{14,21,18}}$$
$$\mu(20 > 21)F_{14,15,18} \qquad \mu(20 > 21)$$

$$L R_{spa} = \frac{1}{2F_{14,21,16}F_{14,15,18}} \approx \frac{1}{2F_{14,21,16}}$$

Haplotype	Observations in Sweden	Observations in Spain
[14 20 16]	14	0
[14 21 16]	6	1
[14 15 18]	0	1
[14 21 18]	6	1
[14 15 16]	5	0

Pseudo-counts

>We may use pseudocounts

Edit clusters/markers			\times		
Database name: Du Or Cluster Chrom Cluster 1) Cluster 2) Cluster 3) Cluster 4)	tions General Lambda Database size 1 692 Use cluster specific Estimate from data Frequency options New allele frequency 0.01 Normalise		Cluster Add Edit Remove Import Export		
	mutations pseudocounts		Options		
<			Close		
Activate					

>We may use pseudocounts

$$F_i = \frac{(c_i + d_i) + \lambda \pi_i}{C + D + \lambda}$$

D describes the total number of observations in a case d_i is the number of "weighted" observations for haplotype *i*.

Suggested by Balding for autosomal markers

Example – Paternal half sisters (revisited)

Table 2. Genotype data for three STR markers located in LG2 of the Argus X12 kit.

ŀ
)
\$

D=4 (there are four observations, two for each female)

Haplotype	d i
12 19 14	0.5
12 19 18	0.5
13 19 14	0.5
13 19 18	0.5
13 18 18	0.5
13 19 18	0.5
14 18 18	0.5
14 19 18	0.5

Example – Paternal half sisters (revisited)

Table 2. Genotype data for three STR markers located in LG2 of the Argus X12 kit.

Marker	G1	G2		Haplotype	d i
DXS7132	12,13	13,14			
DXS10079	19.19	18.19		12 19 14	0.5
DVS10077	14.18	18.18		12 19 18	0.5
DAS100/4 14,18 18,18				13 19 14	0.5
D 1 (there are four				13 19 18	0.5
observations, two for each female)			13 18 18	0.5	
			d Cach	13 19 18	0.5
				14 18 18	0.5
				14 19 18	0.5

- Model does not change the haplotype frequencies in the database
- >Adjusts the frequencies on-the-fly
- More intuitive results
- >Mathematically sound?
- Good for smaller databases (say <1000 haplotypes)</p>

Anepleudies

Forensic Science International: Genetics Volume 74, January 2025, 103128

A mathematical framework for genetic relatedness analysis involving X chromosome aneuploidies

<u>Marisa Faustino ^{a b 1} 2 ⊠, Leonor Gusmão ^c, António Amorim ^{a b d}, Daniel Kling ^{e f}, Nádia Pinto ^{b d g}</u>

Big thanks to Marisa Faustino for sharing slides!

Aneuploidy

Loss or gain of one or more chromosomes

46, XX

47, XXX

46, XX / 47, XXX

Aneuploidy

Loss or gain of one or more chromosomes.

Kinship Investigation Problem

Hypotheses

LR = ?

Objective

- Establish the mathematical framework to weight the DNA evidence of independent
 - X chromosome markers in kinship analyses, between 2 non-inbred individuals when:

Assumptions:

- · Parents without aneuploidies
- No allelic mutations
- Full codominance

Kinship Evaluation

Kinship Evaluation

Genotypic configurations

Pinto et al., (2011)

16 possibilities

- aa, aaa
- aa,aab
- aa,abb
- aa, abc
- aa, bbb
- aa, bbc
- aa, bcd
- ab, aab
- ab, abc
- ab, aaa
- ab, aac
- ab, acc
- ab, acd
- ab,ccc
- ab, ccd
- ab, cde

Genotypic configurations

Pinto et al., (2011)

•

Joint Genotypic Probabilities

The IBD arrangements represent the different possibilities of individuals sharing pairs of IBD alleles per marker

IBD arrangements probabilities

IBD arrangements probabilities

P(x) inference

When the extra X chromosome is maternal:

P(x) inference

When the extra X chromosome is maternal:

P(x) inference

When the extra X chromosome is maternal: Paternal half-sisters

P(x) estimation

- Graph made from an equation adapted from Côté and Edwards, (1975)
- ✤ Considering P(meiosis I errors) = 0.63 (Thomas et al. (2001))

Depends on:Number of crossovers between the centromere and marker

P(x):

- \circ ~0.37 for pericentromeric markers
- $^{\circ}$ ~0.33 for non-pericentromeric markers

P(x): Probability of the maternal alleles inherited being IBD

IBD arrangements probabilities

70

Kinship Evaluation

			$\begin{tabular}{c} H_1: Th \\ H_2: T \\ H_2: T \\ \end{tabular} \end{tabular} \end{tabular} \begin{tabular}{c} H_1: $\phi_1^m $ \\ H_1: $\phi_1^m $ \\ H_2: $\phi_1^m $ \end{tabular} $	the females are related as p the females are unrelated ternal meiotic error infer different alleles in DXS10 bilities (Table 1A): $7 = 0; \varphi_3^m = 1 - P(x H_2, G); \varphi_2^m = P$	conternal half-sisters red as F ₁ shows 3 135: 17,18,19 $(G): \varphi_{1}^{m} = P(x H_{1}, G)$ $(x H_{1}, G): \varphi_{3-7}^{m} = 0$]
	_		M ₁ : DXS10135	M ₂ : DXS10073	M ₃ : DXS10101	M ₄ : DXS10146
Forensic Science International: Genetics	Gj	1,4	F: 17,17 F _T : 17,18,19 F: aa; F _T : abc	F: 20,20 F ₁ : 20,20,20 F: aa; F ₁ : aaa	F: 28,31 F _T : 28,28,28 F: ab; F _T : aaa	F: 26,30 F ₁ : 26,26,30 F: ab; F ₁ : aab
A mathematical framework for genetic		able 2A	$P(x H_1, G_1) = 0$ $\varphi_4^m = 0$	$P(x H_1, G_2) = z$ $\varphi_3^m = 1 - z$	$P(x H_1, G_3) = z$ $\varphi_3^m = 1 - z$	$P(x H_1, G_4) = z$ $\varphi_3^m = 1 - z$
relatedness analysis involving X	Ŧ	A Ta	$\phi_3^m = 1$	$\varphi_4^m = z$	$\varphi_4^m = z$	$\varphi_4^m = z$
chromosome aneuploidies		Table 3/	$\begin{array}{l} P(G_1 H_1) = \\ = 2f_{17}^2 f_{18} f_{19} \end{array}$	$P(G_2 H_1) = = (1-z)f_{20}^4 + zf_{20}^3$	$P(G_3 H_1) = = (1-z)f_{28}^3f_{31} + zf_{28}^2f_{31}$	$P(G_4 H_1) = = (1-z)(2f_{26}^2f_{30}^2) + f_{26}^3f_{30}) + zf_{26}^2f_{30}$
Marisa Faustino ^{a b 1} 久 國, <u>Leonor Gusmão ^c, António Amorim ^{a b d}, Daniel Kling ^ef</u> ,		e 2A	$P(x H_2,G_1)=0$	$P(x H_2,G_2) = z$	$P(x H_2,G_3)=z$	$P(x H_2,G_4) = z$
Nádia Pinto ^{6 d g}	-4	Tabl		$\varphi_1^m = 1 - z$ $\varphi_2^m = z$	$\begin{array}{c} \varphi_1^m = 1 - z \\ \varphi_2^m = z \end{array}$	$\begin{array}{c} \varphi_1^m = 1 - z \\ \varphi_2^m = z \end{array}$
		Table 3A	$P(G_1 H_2) = = 6f_{17}^{3}f_{18}f_{19}$	$\begin{array}{l} P(G_2 H_2) = \\ = (1-z)f_{20}^5 + zf_{20}^4 \end{array}$	$\begin{array}{l} P(G_3 H_2) = \\ = 2(1-z)f_{28}^4f_{31} \\ + 2zf_{28}^3f_{31} \end{array}$	$\begin{array}{l} P(G_4 H_2) = \\ = 6(1-z)f_{26}^{23}f_{30}^2 \\ + 2zf_{26}^2f_{30}^2 \end{array}$
	LF	/=1,,4	$\frac{P(G_1 H_1)}{P(G_1 H_2)}$	$\frac{P(G_2 H_1)}{P(G_2 H_2)}$	$\frac{P(G_3 H_1)}{P(G_3 H_2)}$	$\frac{P(G_4 H_1)}{P(G_4 H_2)}$
	$LR_{Total} \qquad \qquad \prod_{i=1}^{4} LR_i = 1.13 \times 10^5$			1.13×10^{5}		

R_N

Expanded marker panels

FORCE

Different kits

STRs

Figure 1. The ideogram of the X-chromosome describes the physical localization of the STR loci that can be analyzed using the Investigator Argus X-12 OS 502. Distances from the physical localization in Mis (news add)-bits mil-gov/general-guide/human on of 11/2014).

FORCE

rs4892897	7.582	
rs1637781	7.805	
rs5983084	8.5874	
rs6642174	8.8134	
rs6641753	9.1834	
rs6641574	9.4251	
rs2058865	9.7825	
rs5962087	11.3138	
rs5915796	12.2585	
rs5916138	12.71	
rs5915672	13.1805	
rs6529997	13.9103	
rs1637788	15.1505	
rs4240138	15.6932	
rs2108400	16.1319	
rs5933710	17.0167	
rs845444	17.6324	
rs768568	17.9229	
rs929217	18.1746	
	rs4892897 rs1637781 rs5983084 rs6642174 rs6641753 rs6641574 rs5962087 rs5915796 rs5915796 rs5915672 rs6529997 rs1637788 rs4240138 rs4267 rs467 rs467 rs467 rs467 rs467 rs467 rs467 rs467 rs467 rs467	rs4892897 7.582 rs1637781 7.805 rs5983084 8.5874 rs6642174 8.8134 rs6641753 9.1834 rs6641574 9.4251 rs2058865 9.7825 rs5962087 11.3138 rs5915796 12.2585 rs5916138 12.71 rs5915672 13.1805 rs6529997 13.9103 rs1637788 15.1505 rs4240138 15.6932 rs2108400 16.1319 rs5933710 17.0167 rs845444 17.6324 rs768568 17.9229 rs929217 18.1746

Open Access Article

The FORCE Panel: An All-in-One SNP Marker Set for Confirming Investigative Genetic Genealogy Leads and for General Forensic Applications

by 🙁 Andreas Tillmar ^{1,2,*} , 😩 Kimberly Sturk-Andreaggi ^{3,4,5} 🧕 😩 Jennifer Daniels-Higginbotham ^{3,4} , 😩 Jacqueline Tyler Thomas ^{3,4} and 😫 Charla Marshall ^{3,4,6,*} 🤤

- ¹ Department of Forensic Genetics and Forensic Toxicology, National Board of Forensic Medicine, SE-587 58 Linköping, Sweden
- ² Department of Biomedical and Clinical Sciences, Faculty of Medicine and Health Sciences, Linköping University, SE-582 25 Linköping, Sweden
- ³ Armed Forces Medical Examiner System's Armed Forces DNA Identification Laboratory (AFMES-AFDIL), Dover Air Force Base, Dover, DE 19902, USA
- ⁴ SNA International, LLC, Contractor Supporting the AFMES-AFDIL, Alexandria, VA 22314, USA
- ⁵ Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 08 Uppsala, Sweden

X-SNPs are chosen to be have no significant LD

Kintelligence (ForenSeq)

Includes 106 X-SNPs

ESEARCH AIRCLE : Volume 71. 1010(5), July 2014 : Oper Arters: ▲ Download Full Start Developmental validation of the ForenSeq ® Kintelligence kit, MiSeq FGx® sequencing system and ForenSeq Universal Analysis Software Down Aturans * Paulos Walcheversz * Simon Foreward* – Sweath A Kamper * Brace Budowle ** Kathyn M. Stephens A* ** - Show mer Milliadions R Nets × Article Info × Download PDF ** Class & Show & Stel Alert © Get Rights © Reprints	Previous orticle	Next article >
≫ Highlights	Figures (6)	Figure Viewer
- Forristing Kantellingenes kil, Universid Analysis Sathware, and Maley Tac system uses targetes Nex-Generation Sequencing, - Loza of Revisit SNP-loci in a multipler reaction of short amplicans: kinship, identity, hair and eye color, and biogeographical ancestry.		
 and any construction for more easily from owing a consequence samples. SWGAM developmental validation studies included PCR conditions, sensitivity, stability, MPS, mixtures, cost-type samples, and specificatly. 		
Abstract	umum 🖹	
revents: and detection of marks transmission equations and which is the mark generating, and ready that may be a burget and the sensitivity of detection of neuron sequences and and established before and ensemblance approaches to apport the identification of human memians from missing persons investigations and investigative lead generation in violent crimes. To focilitate foreignessic DNA evidence onlysis, the Formers/Ref Kintelligner constitution of a togo SNP, we developed. Design the second se	Show all figures 🗸	
of the ForenSex Kintelligence Kit, the MiSege FGx® Sequencing System and the ForenSeq Universal Analysis Software is described. Developmental validation in accordance with SWGDAM guidelines and forensic quality assurance standards, using single source samples, is reported for the end-to-end workflow from library preparation to data interpretation. Performance metrics support the	Article metrics	
conclusion that more genetic information can be obtained from holdenging samplas compared to other communically available foremaic targeted DNA sassay developed for cogniting exister/patherias (Eq.) are their current rest expression sequencing (NGA) sits due to the higher number of markers, the averall shorter amplicans sizes (px3% scspbb), and sit design. Data indicate that the multiples is robust and fif for paragone for a voider arrange of quantity and quality samples. The Foremates (Kettellignes CR) and the	9 17 Citations Cap	tures
Universal Analysis Software allow transfer of the genetic component of forensic investigative genetic genealogy to the operational forensic laboratory.	ស្លាល <mark>ស្រ</mark> ុស	/iew details 7

referred to here as the "whole genome kinship" approach, that control for the presence of unknown

or unspecified population substructure. Simulated and empirical data in this study, using DNA profiles

MeSH terms

MPSplex

• Includes 29 SNPs (tri-allelic)

A PC C. J Affi	EARCHARTICLE - Volume (d, 10123), May 2000 - Ogen Access	₹ Previous	CIMITE CI
Show Outline	Highlights • 27,934 tri-allelic SNPs were identified in the 1000 Genomes Phase III variant catalog and data has been compiled in Mendeley Data for free access. • From this extensive dataset 8,05 SNPs had heterozygosity values above o.s - the maximum value of perfect binary SNPs (o.s.o.s allele frequencies). • A large-scale formeric identification multiplex was constructed for MPS, comprising 1,241 autosomal plus 29 X tri-allelic SNPs.	Figures (9)	Figure Viewer
			Here.
			FITTEFF
	 Approximately 5% of tri-allelic SNPs selected for the large-scale MPS panel gave three-genotype patterns in one individual or discordant genotypes. 		1100044
	 The need for coution and detailed scrutiny of multiple-allele variant data is highlighted when designing future forensic SNP panels. 		
	Abstract In a directed search of 1000 Genomes Phase III variation data, 27,834 tri-allelic single nucleatide polymorphisms (SNPA) were identified amongst the genotypes of 2,004 individuals from 26 populations. The majority of tri-allelic SNPs have three nucleatide substitution-based alleles at the some position, while a much smaller proportion, which we did not compile, have a nucleatide insertion/defletion abus substitution alles. SNPs with three alleles have halter discrimination power than bismo (chail was then then the source and the source and the source alles have halter discrimination power than bismo (chail was the then the source alles have halter alles have halter alles have halter with the discrimination power than bismo (chail was the then then the source alles have halter alles have halter alles have halter discrimination power than bismo (chail was the then the source alles have halter all the source alles have halter alles have halter alles have halter alles have halter alles have have have the halter have have have have the have an uncleated by the halter have all have the halter all halter have all have the halter have have have all have the halter have have all halter halter have all have all halter halter halter have all halter halter have all have all halter halter halter have all have all halter halter halter halter have all halter halter halter halter have all halter halter halter halter halter have all have halter halter halter have all have all halter halter halter halter halter halter halter have all halter halter halter have halter halter have halter halte	Show all figures 🗸	
		Article metrics	
	same characteristic of optimum amplification of the fragmented DNA found in highly degraded forensic samples. Although most of	1.	
	the tri-allelic SNPs identified had one or two alleles at low frequencies, often single observations, we present a full compilation of the genome positions rs-numbers and genotypes of all triallelic SNPs detected by the good Genomes project from the more	46 Citations	67 Conturer
	detailed analyses it applied to Phase III sequence data. A total of 8,705 tri-allelic SNPs had overall heterozygosities (averaged	citations	cuptores
	across all 1000 Genomes populations) higher than the binary SNP maximum value of 0.5. Of these, 1,637 displayed the highest average heterozyaasity values of 0.6-0.666. The most informative tri-allelic SNPs we identified were used to construct a large-scale	ÖPLUMX	View details 7
	to the identification and for marking the control of a desired for the identification of mining a second to be a second		

Exceedance plots

78

Utility of simulations (Argus X12)

Probability that we can solve a case with the given threshold

FORCE X-SNPs

242 SNPs (only linkage, no LD)

From Bergseth et al. 2022

Power increased substantially

FORCE X-SNPs

E(LR>1000, Argus X12)	E(LR>1000, FORCE)	E(LR>1000, Decaplex)
61%	88%	36%

FORCE X-SNPs

E(LR>1000, Argus X12)	E(LR>1000, FORCE)	E(LR>1000, Decaplex)
48%	81%	25%

81

Advanced topics

DANIEL KLING & ANDREAS TILLMAR

Daniel.kling@rmv.se

Andreas.tillmar@rmv.se

• WORKSHOP 1 X-chromosomal markers in forensic genetics Daviel Kling & Andreas Tillmar

• WORKSHOP 2 Acreditación en el campo de la Genética Forense y

estrategias de validación de ensayos Wanuel Crespillo Márquez, Rosalía Izquierdo & Estel Eureig Cabanes

• WORKSHOP 3

La genética en la Identificación de víctimas a gran escala: comparación de perfiles y evaluación estadística con Familias Carlos Vullo & Lourdes Prieto