

DANIEL KLING & ANDREAS TILLMAR

Daniel.kling@rmv.se

Andreas.tillmar@rmv.se

• WORKSHOP 1 X-chromosomal markers in forensic genetics Daviel Kling & Andreas Tillmar

• WORKSHOP 2

Acreditación en el campo de la Genética Forense y estrategias de validación de ensayos Manuel Crespillo Márquez, Rosalía Izquierdo & Estel Eureig Cabanes

• WORKSHOP 3

La genética en la Identificación de víctimas a gran escala: comparación de perfiles y evaluación estadística con Familias Carlos Vullo & Lourdes Prieto

Cannot FamLinkX import alleles that are not numeric?

Edit allele system	×
System name Genetic position rs12345 10.1 Name Frequency Edit Error X	Version 2.9.3
Allele name must be a numerical!	
ОК	
Close	
Name Frequency Add	

Workaround: Import them from file (normal procedure)

 Should the frequency file downloaded from the FamLink website be used as input in its entirety? If so, where should

it be uploaded

Frequency databases (haplotypes and allele frequencies)

Databases may be found here or downloaded in the tables below. Size refers to

Please note that several populations can appear twice (different sources) and in

Argus X12			
Population	Size	Database	Publication
Sweden	652	>> <u>swe</u>	<u>Tillmar A.</u>
Norway	631	NOR	<u>Bergseth et al.</u>
Czech Repubic	307	<u>CZE</u>	Zidkova et al.
Germany	1037	<u>GER</u>	<u>Edelmann et al.</u>
Greece	121	GRE	<u>Tomas et al.</u>
Italian	200	<u>ITA</u>	<u>Bini et al.</u>
Sardinia	316	<u>SAR</u>	<u>Robino et al.</u>
Serbia	220	<u>SER</u>	<u>Veselinovic et al.</u>

 Should the frequency file downloaded from the FamLink website be used as input in its entirety? If so, where should

it be uploaded

ile Tools Help		
New Wizard New Project	Ctrl+N	[Save file - FamLinkX Version 2.2] [General parameters]
Open	Ctrl+O	NewAlleleFrequency = 0.01
Save Save As Frequency database Advanced Recent File Exit	Ctrl+S	Lambda = 652 DatabaseSize = 652 : DatabaseName: Swede [[Thresholds]] 0 1e-005 1 1e-005 2 1e-005 3 1e-005 5 1e-005 6 1e-005

The files are FamLinkX projects (.sav format)

 From the slides in the first session, I noticed there is a section for absolute haplotype frequencies per linkage group and another for allele frequencies. Should we separate the downloaded database into two separate files: one containing only allele frequencies and another with haplotype frequencies?

> <u>A single file should be used. Haplotypes are a different format and</u> <u>Allele frequencies are automatically computed from these</u>

 To create a database in the same structure as the one available on the website, is there a specific tutorial or is it the output of a particular software?

amLinkX - famlinkx	database_force_
Tools Help	
New Wizard	Ctrl+N
New Project	
pen	Ctrl+O
ave	Ctrl+S
e As	
requency database	
dvanced	
cent File	
Exit	

See slides from Session 1 on FamLinkX and frequency import

FamLinkX

Frequency data import format

Haplotypes

Haplotype	DXS10148	DXS10135	DXS8378	Count
Germa1	13.3	28	12.0	1
Germa2	13.3	29	12.0	1
Germa3	14	27	12.0	1
Germa4	16	22.1	10.0	1
Germa5	16.1	27	10.0	1
Germa6	17	27	12.0	1
Germa7	18	18	11.0	1
Germa8	18	27	11.0	1
Germa9	18	27	11.0	1
Germa10	18	27	11.0	1
Germa11	18	27	12.0	1

7

FamLinkX will automatically detect common STR markers

FamLinkX

Frequency data import format

DXS9900 0.31 0.001
DXS6807 14.76 0.009322404 0.018470994 0.018470994
DXS9895 17.09 0.011684636 0.02309621 0.02309621
DXS9906 17.1 0.001
DXS10148 19.84 0.004727572 0.007048422 0.002667129
DXS10135 20.03 0.010961627 0.017863682 0.003903
DXS8378 20.21 0.001096763 0.001374888 0.000579003
DXS9902 32.32 0.003241543 0.004436024 0.001921965
DXS6795 44.24 0.001937751 0.003867992 0.003867992
DXS10159 90.01 0.01565018 0.030810504 0.030810504
DXS9902 32.32 0.003241543 0.004436024 DXS6795 44.24 0.001937751 0.003867992

Marker

FamLinkX finds genetic position and mutation rates

[cM Kosambi] Overall mutation rate Male mutation rat Female mutation rate

 Many studies report linkage disequilibrium between loci in different linkage groups. When using a population database where disequilibrium has been identified between loci from different linkage groups, should we use haplotype frequencies based on linkage groups, or is it more appropriate to use haplotype frequencies based on all 12 X-STRs?

We will address this and further question today