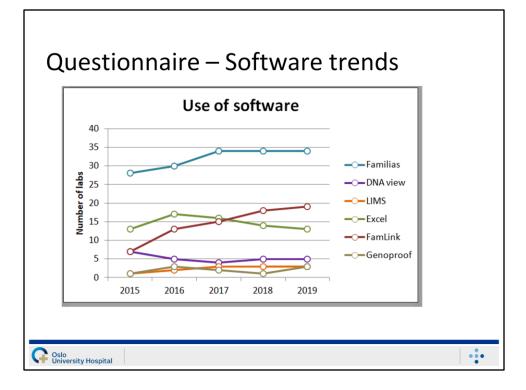
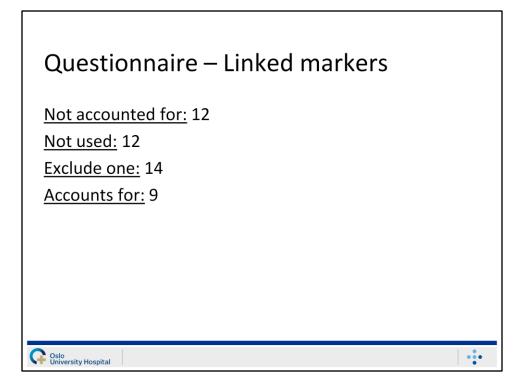
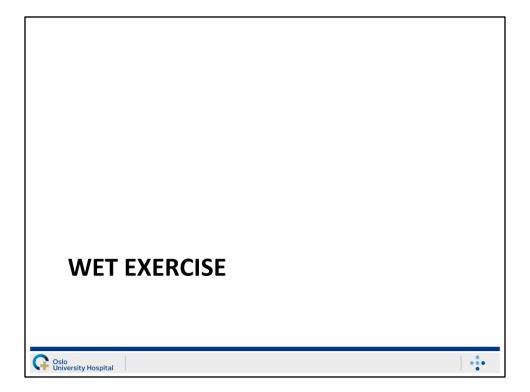

This is a summary of the ESWG proficiency test 2020. Complete results are contained in the Excel summary. A video is available through

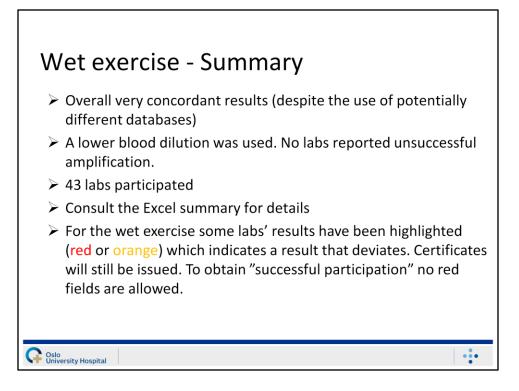
https://familias.name/ESWG/presentation_eswg_202 0.mp4

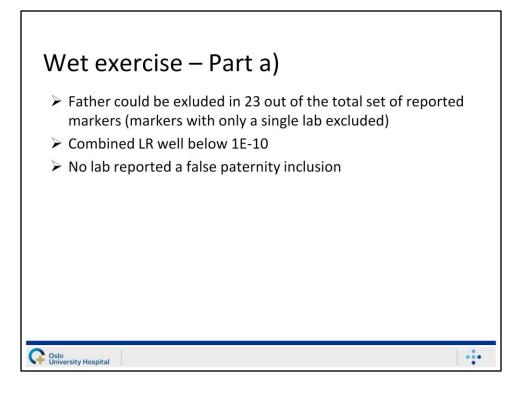


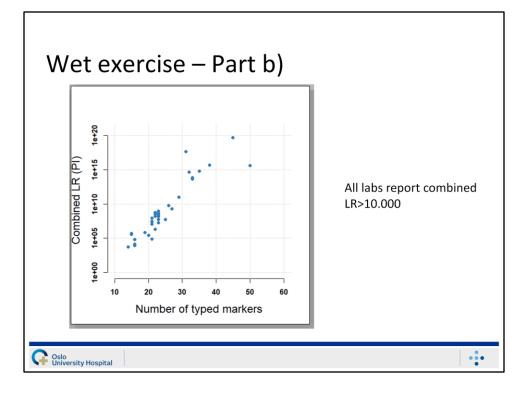

We observe a steady-state for the number of participating labs. Paper challenge is seeing a decrease – partly explained by the Pandemic.

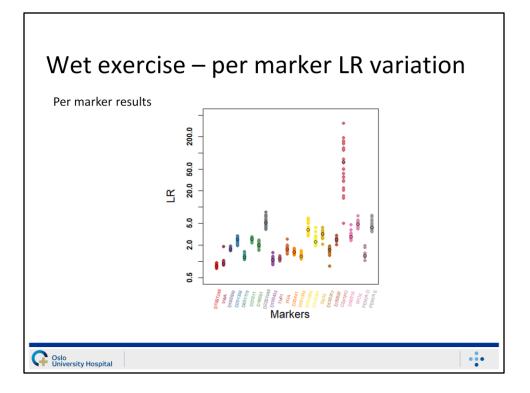


An increase in NGS/MPS/2nd generation sequencing and a drop in Sanger.

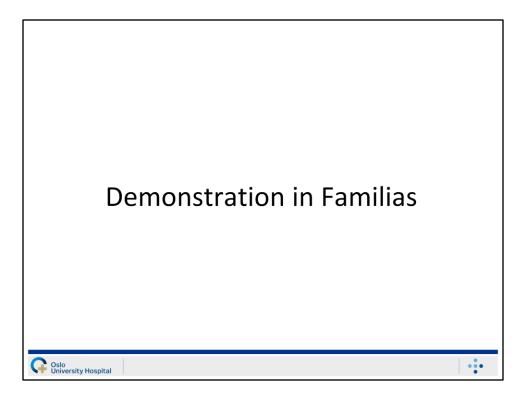


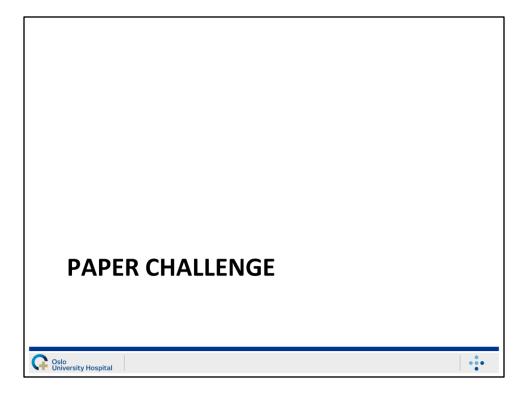

Linkage is becoming increasingly relevant with the expanded marker panels used. We see that only 9 of the participating labs account (or adjust) the LR accordingly. This is something that needs further attention in the next few years.

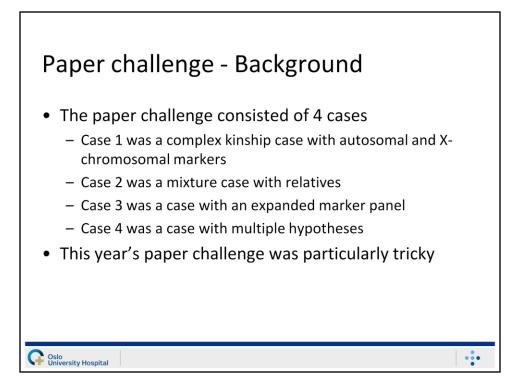



The following slides summarizes the wet exercise

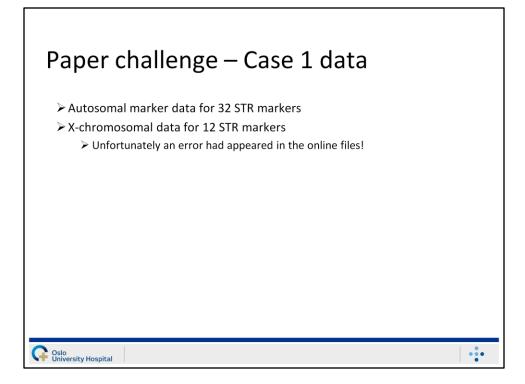
ESWG Oslo University Hospital	
ESWG WET EXERCISE 2020	
This year's wet exercise includes a child (sample labeled Child) seeking his/her biological father. Conduct a paternity test for the two alternative fathers (samples labeled Father1 and Father2).	
Use a frequency database appropriate for an Caucasian population. Report the likelihood ratios (LR) for the individual genetic markers included in the tests as well as the combined LR. State which frequency database you have used for the calculations.	
Samples and procedure	
The samples (three in total) consist of blood on FTA cards (diluted spots). The dilution this year has	
decreased, i.e. the concentration has increased. This should mitigate some of the problems	
experienced previous year by some labs. We recommend direct amplification with buffers available from vendors (alternatively direct amplification with modern multiplexes). Other extraction	
procedures have not been tested.	
Please perform the DNA tests according to your procedures for kinship analysis and report the data	
and conclusions in the questionnaire attached to the information email. If different kits are included in the analysis and any discrepancies between overlapping markers occur, please state the	
in the analysis and any discrepancies between overlapping markers occur, please state the	

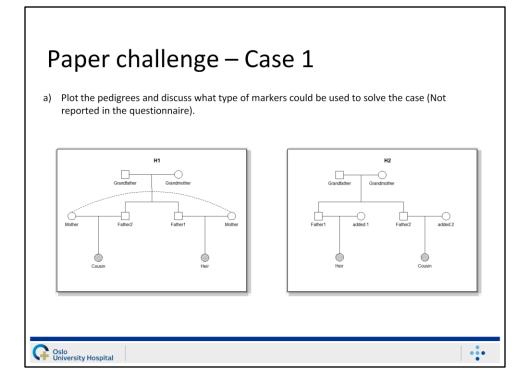




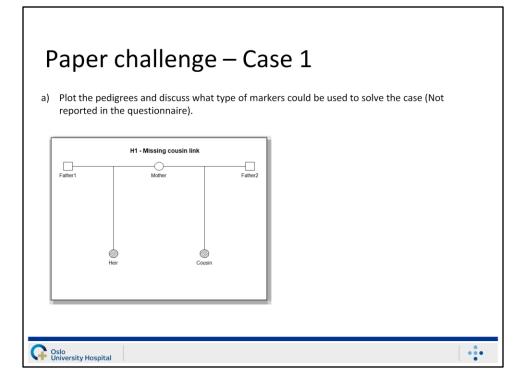

Big variation in CSF1PO. A rare allele is shared between the father and the child.

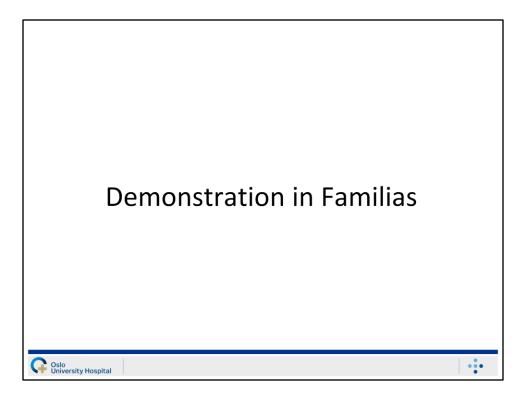
See online video for demonstration


We start with the paper challenge. Solutions files (available for Familias and FamLinkX) are available through http://familias.name/ESWG/ESWG_2020_solutions.zip


Brief description of this year's paper challenge. It is divided into four different cases, each with its own complexity.

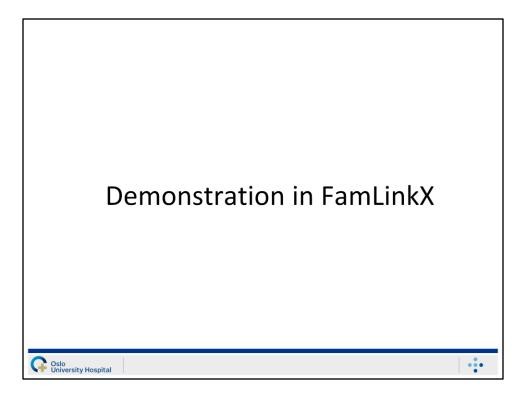
Pap	per cha	aller	nge – C	ase	1		
	ESWG)	Oslo University Hos	spital	isfg		
		ESWG F	PAPER CHALLE	NGE 202	0		
	participation, at lea	ist two has to be ne/ESWG/ESWG	ed into four different parts. e completed. All data is give <u>i2020_paperchallenge.zip</u> in ers in the supplied Excel qu	n as files at addition to son			
	Case 1 – Comple.	x kinship case	e – An inheritance clair	n			
	The first case deals	with an inherita	ance dispute, where a cousi	n (paternal) to a	sole heir of rich		
	woman, whom is re	cently deceased	d, claims that she is also the	long lost (mate	rnal) half sister. The		
			ernal cousin (their fathers a				
	maternal half sister	. Data for 32 au	tosomal STR markers is give	n in the table be	elow.		
	Marker	Heir	Cousin				
	D3S1358	16,16	16,17				
	TH01	6,7	6,6				
	D21511	28,29	28,30.2				
	D18551	17,17	16,17				
	PENTA_E	7,17	7,10				
	D55818	12,13	10,13				
	D13S317	12,12	11.12				


Some background.


Brief summary of the genetic marker data. There was an error in the X-chromosomal data given in the online files.

Correct formulation of the hypotheses

Errounous H1 with missing cousin link

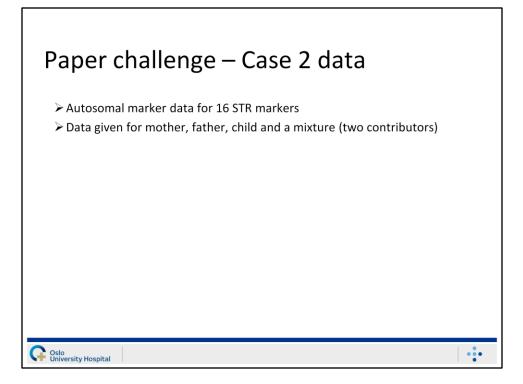

Available in the online video

Paper challenge – Case 1
 b) Compute the LR for the given autosomal markers comparing. H1: The heir and her paternal cousin are maternal half sister. H2: The heir and her paternal cousin are unrelated on their maternal side. For b) we can ignore complicating factors such as mutations, silent alleles and linkage.
The LR becomes approximately 65 (when not considering any linkage or mutations, as stated). If the cousin link is not accounted for, the LR becomes 159502 instead.
Constant Delo

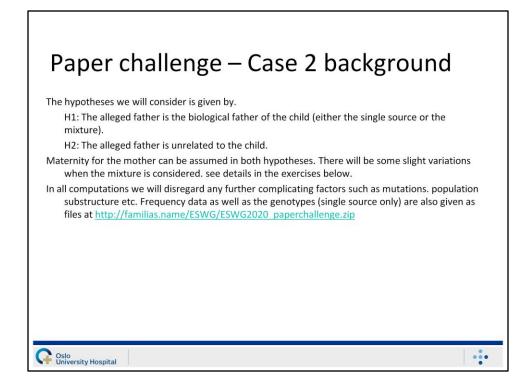
An overestimation of the evidence if the cousin link is not accounted for.

Раре	r chal	llenge	– Case 1
, ,			mal data using the same hypotheses as in a). Mutations and hkage and linkage disequilibrium should be accounted for if
d) Combine	the LRs from	b) and c) into	a total LR. What is your verbal verdict in the case?
Marker	Heir	Cousin	
DXS10148	18, 25.1	25.1, 25.1	
DXS10135	20, 23	23, 27	
DXS8378	10, 11	10, 11	
DXS7132	13, 13	13, 13	
DXS10079	19, 22	19, 22	
DXS10074	16, 16	16, 16	
DXS10103	16, 18	16, 17	
HPRTB	13, 14	13, 14	
DXS10101	25.2, 28.2	25.2, 31	
DXS10146	27, 28	27, 28	
DXS10134	34, 37	37, 38	
DXS7423	13, 14	13, 15	2
	pital		

X-chromosomal data (correct alleles in the table while the online files contained an error).

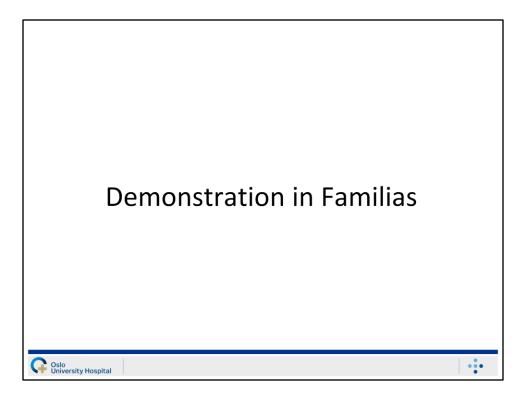

Available in the online video.

Paper challenge – Case 1
c) Compute the LR for the X-chromosomal data using the same hypotheses as in a). Mutations and silent alleles can be ignored while linkage and linkage disequilibrium should be accounted for if relevant.
The LR becomes 38 if the cousin link is accounted for. This required the creation of pedigrees in FamLinkX. Without the cousin link an LR of >200,000 is obtained.
d) Combine the LRs from b) and c) into a total LR. What is your verbal verdict in the case?
The combined LR becomes 65 times 38 = 2470. So the data is more than 2000 times more likely of H1 is true compared to if H2 is true. If equal prior probabilities are assumed this translates to a greater then 99.9% posterior probability for H1.
Oslo University Hospital


Again, an overestimation of the evidence if the cousin link is not accounted for. The total LR is greater then 2000 an therefore provides strong support for H1.

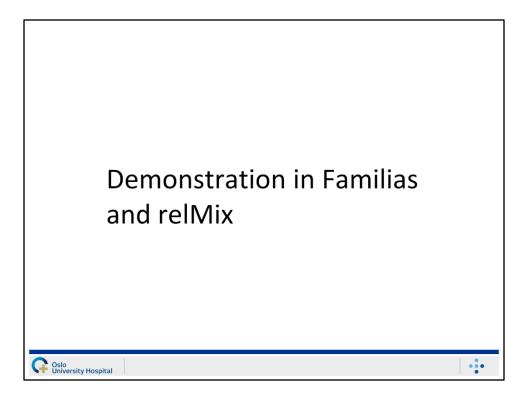
(ESWO		Cos	lo	Hospital	(iSF	G	
Long		Un	iversity	Hospital			
Case 2: Mixtu	re with relatives						
		mple from	an aborti	on, where the results	s display a mixture	e of	
				er is sampled as well	and the second		
				rn child. Data is giver			
Marker	Mother	Father	Child	Mixture			
D3S1358	14,16	15,15	14,15	14,15,16			
TH01	9,9.3	9,9.3	9,9.3	9,9.3			
D21S11	29,34.2	29,30	29,30	29,30,34.2			
D18551	14,18	14,15	14,18	14,18			
PENTA_E	10,12	5,13	12,13	10,12,13			
	9,12	12,13	9,12	9,12			
D55818		10,12	10,11	10,11,12			
D135317	11,12						
D135317 D75820	9,10	8,12	8,10	8,9,10			
D135317 D75820 D165539	9,10 11,13	8,12 11,13	8,10 11,13	11,13			
D135317 D75820 D165539 CSF1PO	9,10 11,13 10,12	8,12 11,13 12,12	8,10 11,13 10,12	11,13 10,12			
D13S317 D7S820 D16S539 CSF1PO PENTA_D	9,10 11,13 10,12 10,12	8,12 11,13 12,12 10,13	8,10 11,13 10,12 10,10	11,13 10,12 10,12			
D135317 D75820 D165539 CSF1PO PENTA_D VWA	9,10 11,13 10,12 10,12 17,17	8,12 11,13 12,12 10,13 17,20	8,10 11,13 10,12 10,10 17,17	11,13 10,12 10,12 17,17			
D135317 D75820 D165539 CSF1PO PENTA_D VWA D851179	9,10 11,13 10,12 10,12 17,17 10,16	8,12 11,13 12,12 10,13 17,20 12,12	8,10 11,13 10,12 10,10 17,17 12,16	11,13 10,12 10,12 17,17 10,12,16			
D135317 D75820 D165539 CSF1PO PENTA_D VWA	9,10 11,13 10,12 10,12 17,17 10,16 8,11	8,12 11,13 12,12 10,13 17,20 12,12 8,9	8,10 11,13 10,12 10,10 17,17 12,16 8,11	11,13 10,12 10,12 17,17 10,12,16 8,11			
D135317 D75820 D165539 CSF1PO PENTA_D VWA D851179	9,10 11,13 10,12 10,12 17,17 10,16	8,12 11,13 12,12 10,13 17,20 12,12	8,10 11,13 10,12 10,10 17,17 12,16	11,13 10,12 10,12 17,17 10,12,16			

Second paper challenge case - background



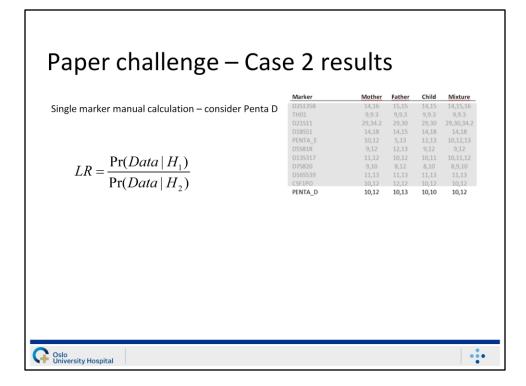
Brief summary of the genetic marker data.

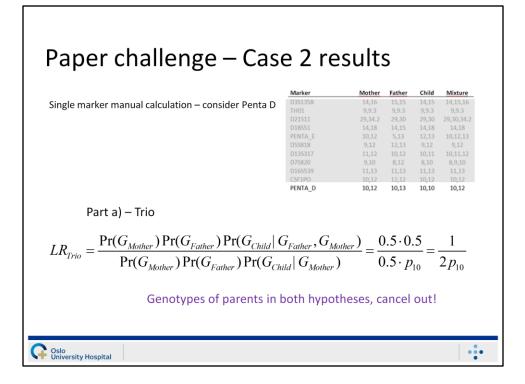
Paper challenge – Case 2	
a) Compute the LR comparing using the single source sample for the child.	
Qslo University Hospital	•••


First part is a regular paternity case. We compute the LR for the trio and for paternity only (disregarding the mother)

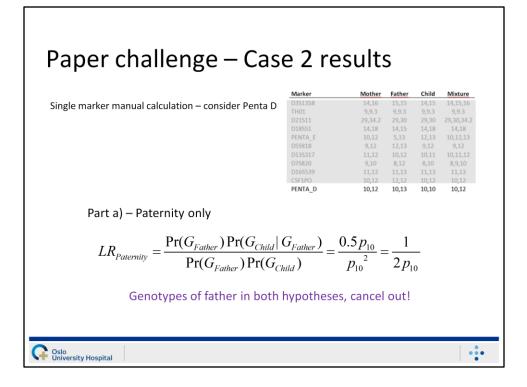
Video available online, see first slide.

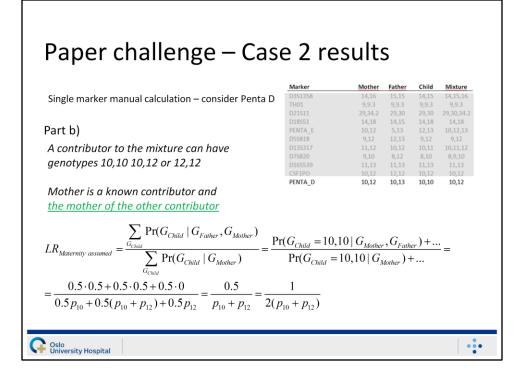
Paper challenge – Case 2	
b) Now consider the mixture (abortion sample), compute the LR in the same manner. Use the sample for the mother as a known contributor in the mixture (both hypotheses)c) Consider the mixture again, compute the LR as in b), but disregard the known profile of the mother (both hypotheses).	
Oslo University Hospital	

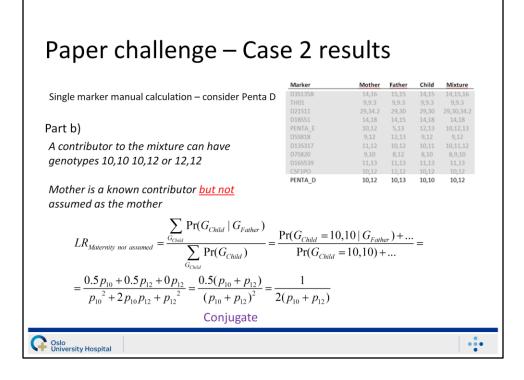

For the next part of the exercise we work with the mixture (mother and child). We will provide demonstration in the R package relMix

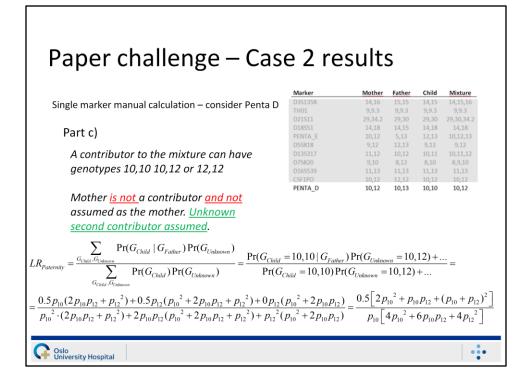

See online video. Script for relMix is available through http://familias.name/ESWG/ESWG_Case2_solution.R. Data for the mixture table is available through http://familias.name/ESWG/ESWG2020_paperchallenge_cas e2_genotypedata_R.txt

			0-	– Case		 -	
Marker	LR a)	LR a) paternity		LR b) no maternity			
D3S1358	3.79	1.90	3.79	2.40	1.34		
TH01	2.11	2.61	2.11	2.11	2.33		
D21S11	2.00	2.12	2.00	2.07	1.59		
D18S51	1.89	1.33	1.89	1.89	1.65		
PENTA_E	6.11	3.06	6.11	3.47	1.89		
D5S818	1.29	0.71	1.29	1.29	1.01		
D13S317	5.62	2.81	5.62	3.44	2.23		
D7S820	3.13	1.56	3.13	1.81	1.00		
D16S539	2.09	2.26	2.09	2.09	2.16		
CSF1PO	1.73	1.52	1.73	1.73	1.64		
PENTA_D	3.98	3.98	1.39	1.39	1.65		
VWA	1.69	1.69	1.69	1.69	1.69		
D8S1179	7.20	3.60	7.20	4.93	2.77		
TPOX	0.62	0.45	0.62	0.62	0.55		
FGA	2.90	1.45	2.90	2.19	1.73		
D19S433	1.23	1.37	1.23	1.23	1.29		
Total	1619722	9940	564300	38336	1158		


Likelihood ratios calculated with different methods. a) is calculated in Familias (both the second and third column). b) is calculated in relMix (both fourth and fifth column). c) is calculated in the familial searching module of Familias.


Manual calculations for one marker using different methods and approaches. Formal definition of the LR.

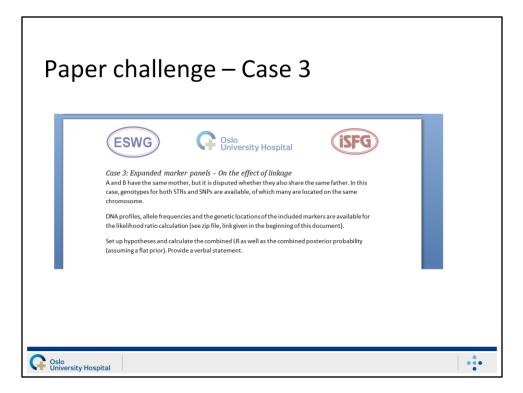

Straight-forward derivation of the LR for a trio. Some steps are omitted for brevity.


Straight-forward derivation of the LR for the paternity (mother is disregarded). Some steps are omitted for brevity. Conditioning on the mother does not add any information for this particular marker.

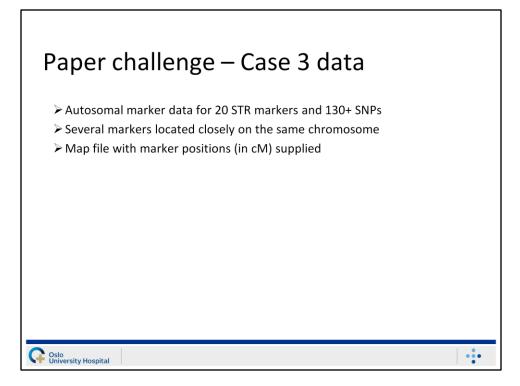
Less straight-forward derivation of the LR for the mixture. We enumare all possible genotype of the child (second contributor) in the mixture. The mother's genotype is a known contributor.

Less straight-forward derivation of the LR for the mixture where we only consider the paternity. We enumare all possible genotype of the child (second contributor) in the mixture. The mother's genotype is a known contributor.

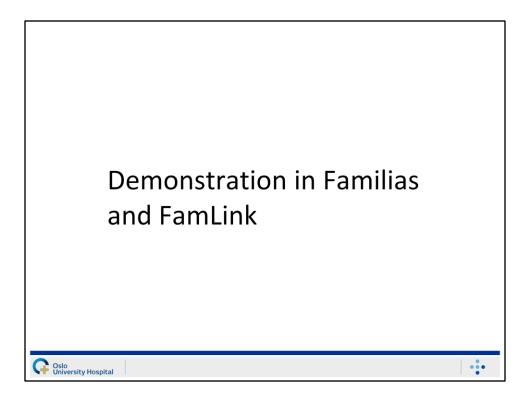
Least straight-forward derivation of the LR for the mixture where we only consider the paternity and where the mother's genotypes are disregarded. This requires a second unknown contributor.

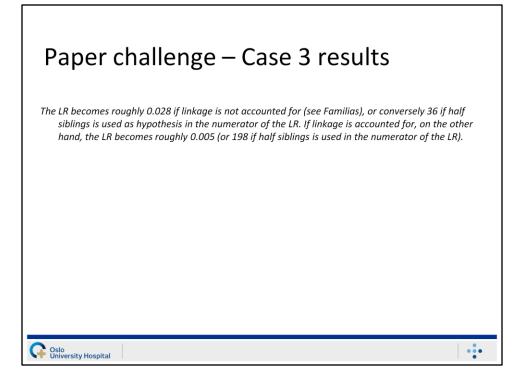

		_			sι				
			Marker			Mother	Father	Child	Mixture
Single ma	ker manual calculation -	- consider Penta D	D3S1358			14,16	15,15	14,15	14,15,16
Single mai	Rei manual calculation	consider i enta D	TH01			9,9.3	9,9.3	9,9.3	9,9.3
			D21S11			29,34.2	29,30	29,30	29,30,34.2
	1	0 1050	D18551			14,18	14,15	14,18	14,18
	$LR_{Trio} = \frac{1}{2p_{10}}$	p ₁₀ =0.1256 p ₁₂ =0.2349	PENTA_E			10,12	5,13	12,13	10,12,13
Part a)	$T_{Trio} = \frac{2}{2} n$	$n_{12}=0.2349$	D55818			9,12	12,13	9,12	9,12
		P12-0.2040	D135317			11,12	10,12	10,11	10,11,12
	$LR_{Paternity} = \frac{1}{2p_{10}}$		D75820			9,10	8,12	8,10	8,9,10
	$LR_{Patamity} = -$		D165539			11,13	11,13	11,13	11,13
	$2 p_{10}$		CSF1PO			10,12	12,12	10,12	10,12
	x 10		PENTA_D			10,12	10,13	10,10	10,12
				Marker	LR a)	LR a) pater	mity LRb)	LR b) no r	maternity LRc)
		1		D351358	3.79	1.90	3.79		40 1.34
	<i>LR</i> =	1		TH01		2.61		2.	
D	$LR_{Maternity\ assumed} = \frac{1}{2(p)}$	$(n + n_{re})$		D21511 D18551	2.00		2.00		
Part b)				PENTA E	6.11				
	$LR_{Maternity not assumed} = \frac{1}{2}$	1		D55818	1.29		1.29		
	$LR_{Maternity not assumed} = -$			D135317	5.62	2.81	5.62	3.4	
	2	$(p_{10} + p_{12})$		D75820	3.13	1.56	3.13		
		s. 10 . 12/		D165539	2.09	2.26			
				CSE1PO PENTA D	1.73 3.98	1.52	1.73	1.1	73 1.64 39 1.65
	$\begin{bmatrix} 2n \\ 2 \end{bmatrix}$		2	VWA	1.69	1.69	1.69	1.	
	$LR_{Paternity} = \frac{\left 2 p_{10}^{2} + \mu \right }{4 p_{10} \left[2 p_{1} \right]}$	$p_{10}p_{12} + (p_{10} + p_{12})$		D851179				4.1	
Part C)	$LR_{Paternity} = \frac{1}{4}$	2 . 2 2	Ē	TPOX	0.62	0.45	0.62		
	$4 p_{10} 2 p_1$	$p_0^- + 3p_{10}p_{12} + 2p_{12}^-$		FGA	2.90	1.45	2.90	2.	
	L		-						

Г

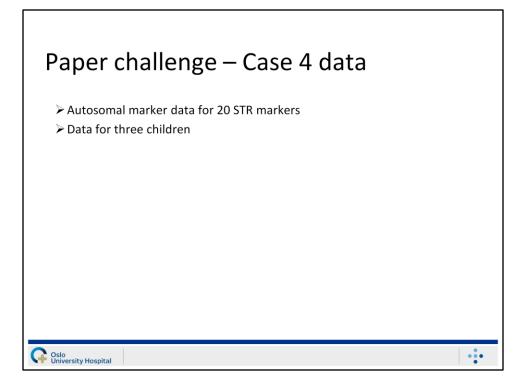

Manual calculations for one marker using different methods and approaches

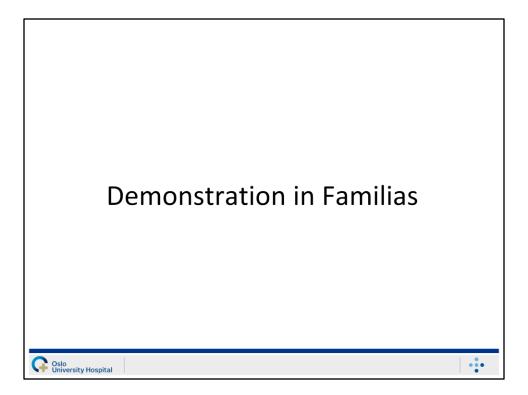
										ision		
1.	Known cor	ntributors d	oes no	t alwa	ys increas	e the LR	(see F	Penta D and	d TH	01) but genero	ally will,	
	see rest of the STR markers (compare last two columns of right table)											
2.	Madalling	that the m	athar is	thon	acthor of	the child	100.00	ntributor t	o the	mintural car	incroa	
Ζ.	Modelling that the mother is the mother of the child (as contributor to the mixture) can increase											
	the LR but	does not n	ecessar	rily (co	mpare th	ird and f	ourth	column of	right	table)		
2	The misture	a anhi hac	a mino	r inan a	ist on the	ID if wa	mada	t the know		tributors and	mators	
3.	The mixture only has a minor impact on the LR if we model the known contributors and matern											
	(compare first and third column of the right table)											
			F-sh-s-	Ch II.d		Marker	LR a)	LR a) paternity	LRb)	LRb) no maternity	LR c)	
	Marker	Mother	Father	Child	Mixture	D3S1358	3.79	1.90	3.79	2.40	1.34	
	D3S1358 TH01	14,16	15,15 9,9.3	14,15 9,9.3	14,15,16 9,9.3	TH01	2.11	2.61	2.11	2.11	2.33	
	D21511	29,34.2	29,30	29,30	29,30,34.2	D21511	2.00	2.12	2.00	2.07	1.59	
	D18551	14.18	14,15	29,30	14,18	D18551	1.89	1.33	1.89	1.89	1.65	
	PENTA E	14,18	5.13	12,13	10,12,13	PENTA_E	6.11	3.06	6.11	3.47	1.89	
			12.13	9,12	9,12	D55818	1.29	0.71	1.29	1.29	1.01	
				9,12	10,11,12	D135317	5.62	2.81	5.62	3.44	2.23	
	D55818	9,12		10 11			3.13	1.56	3.13	1.81	1.00	
	D55818 D135317	11,12	10,12	10,11		D75820	5.15	1.50				
	D55818 D135317 D75820	11,12 9,10	10,12 8,12	8,10	8,9,10	D75820 D165539	2.09	2.26	2.09	2.09	2.16	
	D55818 D135317 D75820 D165539	11,12 9,10 11,13	10,12 8,12 11,13	8,10 11,13	8,9,10 11,13				2.09 1.73	2.09 1.73	2.16	
	D55818 D135317 D75820 D165539 CSF1PO	11,12 9,10 11,13 10,12	10,12 8,12 11,13 12,12	8,10 11,13 10,12	8,9,10 11,13 10,12	D165539	2.09	2.26				
	D55818 D135317 D75820 D165539 CSF1PO PENTA_D	11,12 9,10 11,13 10,12 10,12	10,12 8,12 11,13 12,12 10,13	8,10 11,13 10,12 10,10	8,9,10 11,13 10,12 10,12	D16S539 CSF1PO	2.09 1.73	2.26 1.52	1.73	1.73	1.64	
	D55818 D135317 D75820 D165539 CSF1PO PENTA_D VWA	11,12 9,10 11,13 10,12 10,12 17,17	10,12 8,12 11,13 12,12 10,13 17,20	8,10 11,13 10,12 10,10 17,17	8,9,10 11,13 10,12 10,12 17,17	D16S539 CSF1PO PENTA_D	2.09 1.73 3.98	2.26 1.52 3.98	1.73 1.39	1.73 1.39	1.64 1.65	
	D55818 D135317 D75820 D165539 CSF1PO PENTA_D VWA D851179	11,12 9,10 11,13 10,12 10,12 17,17 10,16	10,12 8,12 11,13 12,12 10,13 17,20 12,12	8,10 11,13 10,12 10,10 17,17 12,16	8,9,10 11,13 10,12 10,12 17,17 10,12,16	D16S539 CSF1PO PENTA_D VWA	2.09 1.73 3.98 1.69	2.26 1.52 3.98 1.69	1.73 1.39 1.69	1.73 1.39 1.69	1.64 1.65 1.69	
	D55818 D135317 D75820 D165539 CSF1PO PENTA_D VWA D851179 TPOX	11,12 9,10 11,13 10,12 10,12 17,17 10,16 8,11	10,12 8,12 11,13 12,12 10,13 17,20 12,12 8,9	8,10 11,13 10,12 10,10 17,17 12,16 8,11	8,9,10 11,13 10,12 10,12 17,17 10,12,16 8,11	D16S539 CSF1PO PENTA_D VWA D8S1179	2.09 1.73 3.98 1.69 7.20	2.26 1.52 3.98 1.69 3.60	1.73 1.39 1.69 7.20	1.73 1.39 1.69 4.93	1.64 1.65 1.69 2.77	
	D55818 D135317 D75820 D165539 CSF1PO PENTA_D VWA D851179	11,12 9,10 11,13 10,12 10,12 17,17 10,16	10,12 8,12 11,13 12,12 10,13 17,20 12,12	8,10 11,13 10,12 10,10 17,17 12,16	8,9,10 11,13 10,12 10,12 17,17 10,12,16	D165539 CSF1PO PENTA_D VWA D851179 TPOX	2.09 1.73 3.98 1.69 7.20 0.62	2.26 1.52 3.98 1.69 3.60 0.45	1.73 1.39 1.69 7.20 0.62	1.73 1.39 1.69 4.93 0.62	1.64 1.65 1.69 2.77 0.55	


Some conclusions for Case 2.

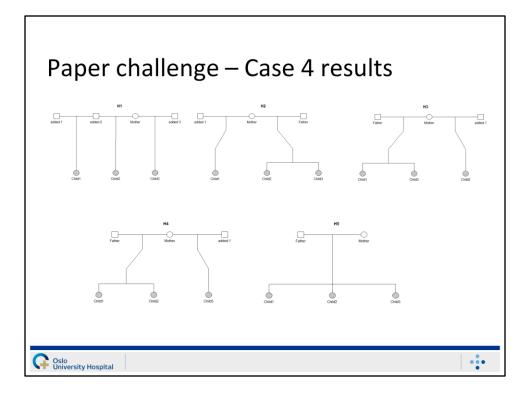

Background for the third case of the paper challenge. The exercise involves an expanded marker panel

Brief summary of the genetic marker data.


Videos available online. Link given in first slide.

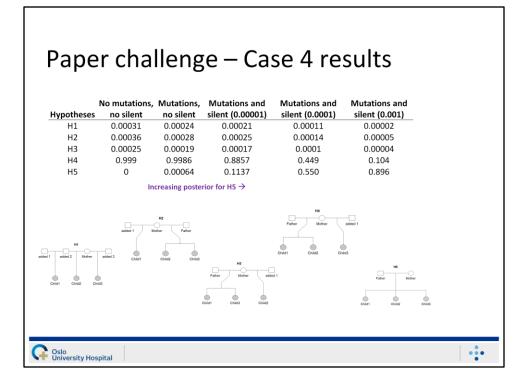

Summary of the results. Accounting for linkage will increase the support for the second hypotheses (half siblings) to roughly 200, compared to only 36 if linkage is not accounted for.

Рар	er challer	ge – Case 4	
	Child1, Child2 and Child3 ha the children needs to be esta	2 9, 11 2 8, 12 3 11, 12 8 18, 18 .2 14, 15.2 .2 29, 33.2 1 17, 18	ame father,
Oslo University H	lospital		•••

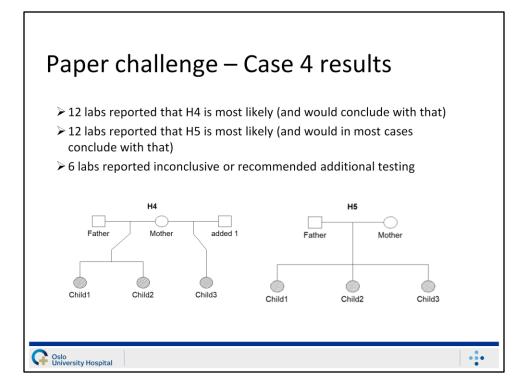

Background for the fourth case of the paper challenge. Data given for three children.

Brief summary of the genetic marker data.

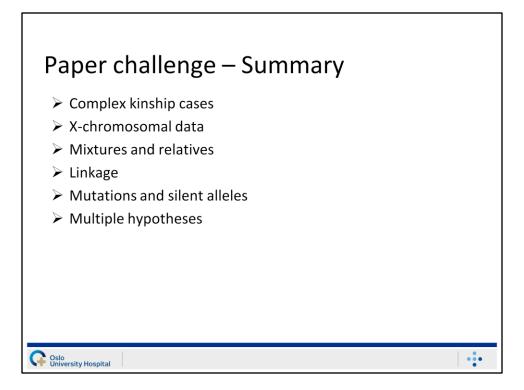
Video available online. Link given in first slide.

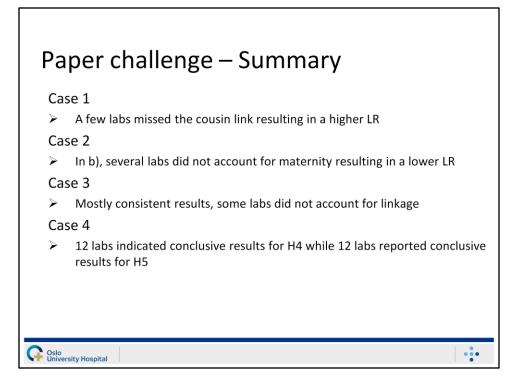

The hypotheses (pedigrees) generated for this case.

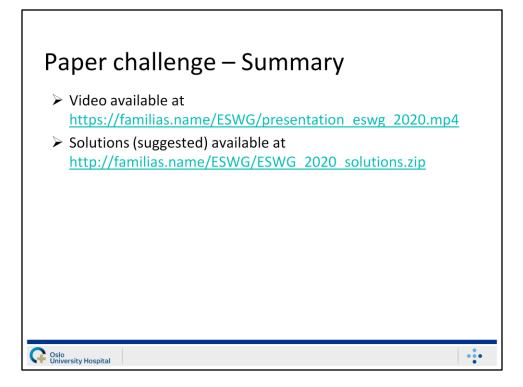
Compare DN/					X	added 1 added 2 Mother
					~	Child1 Child2 C
System	LR	Child1	Child2	Child3		
CSF 1PO	0.3760657	12, 12	12, 12	9, 11		H2
D13S317	3.012455779	8, 12	8, 12	8, 12		added 1 Mother
D16S539	0.6328977	11, 13	11, 13	11, 12		acced i Mother
D18S51	0	22, 22	14, 18	18, 18		
D19S433	3.195875489	12, 14	14, 15.2	14, 15.2		
D21S11	0.7323725	29, 32.2	29, 32.2	29, 33.2		Child1 Child2
D2S1338	3.28969025	17, 18	18, 21	17, 18		51101 01102
D3S1358	1.746683955	16, 16	15, 16	15, 16		нз
D5S818	0.3433040	11, 12	12, 13	12, 12		
D7S820	0.7550753	8, 8	8,8	8, 12		Father Mother
D8S1179	0.7521977	14, 14	14, 14	13, 14		
FGA	0.7675741	22, 22	22, 22	20, 22		
TH01	0.7767790	8, 9	8, 9	7, 9		Child1 Child3
TPOX	1.535463308	8, 12	8, 11	11, 12		Child1 Child3
D10S1248	2.426594467	15, 17	14, 16	14, 16		H4
D12S391	0.8787964	17, 21	17, 21	17, 17		П————————————————————————————————————
D1S1656	6.447096544	16, 17	16.3, 17	16, 17		Father Mother
D22S1045	0.6245414	11, 15	11, 15	11, 16		
D2S441 SE33	2.440428589	10, 14	10, 14	10, 14		
SE33	0	30.2, 33	30.2, 32	26.2, 30.2		Child1 Child2
						Child1 Child2
۲					>	Father M
Total LR: 0			Save C	ose		

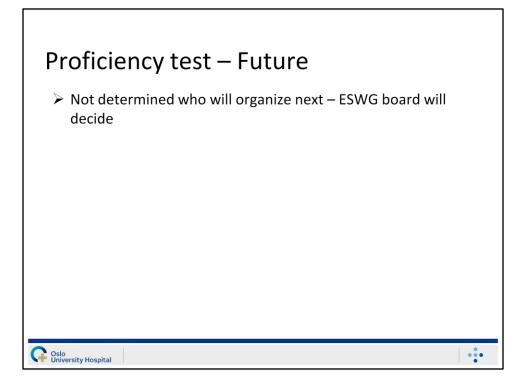

Two inconsistencies (D18S51 and SE33) given the fifth (H5) hypothesis. H5 constraints the number of alleles to four (two parents). SE33 can be explained by a single step mutation while D18S51 is more likely explained by a silent allele.

R. down				added 1 added 2 Mother		
Compare DNA					×	Childt Childz Child
System	LR	Child1	Child2	Child3		H2
CSF 1PO	1.515405116	12, 12	12, 12	9, 11		
D13S317	3.009341631	8, 12	8, 12	8, 12		added 1 Mother Fa
D16S539	2.23596439	11, 13	11, 13	11, 12		
D18551	0.1211116	22, 22	14, 18	18, 18		
D19S433	0.6828042	12, 14	14, 15.2	14, 15.2		
D21S11	3.917668899	29, 32.2	29, 32.2	29, 33.2		Child1 Child2
D2S1338	3.284001009	17, 18	18, 21	17, 18		
D3S1358	0.7882899	16, 16	15, 16	15, 16		нз
D55818	0.2598265	11, 12	12, 13	12, 12		
D7S820	3.078819711	8,8	8,8	8, 12		Father Mother
D8S1179	3.028897207	14, 14	14, 14	13, 14		
FGA	3.29735637	22, 22	22, 22	20, 22		
TH01	4.841025024	8,9	8,9	7,9		Child1 Child3
TPOX	0.9040812	8, 12	8, 11	11, 12		ciitti ciitti c
D10S1248 D12S391	0.4171218 3.216039278	15, 17	14, 16	14, 16		H4
D125391 D151656	3.216039278 6.432688314	17, 21	17, 21	17, 17		
D151656	1.93866186	16, 17	16.3, 17	16, 17		Father Mother
D2251045	2,437908449	10, 14	11, 15	11, 16		
SE33	0.3143917	30.2, 33	30.2, 32	26.2, 30.2		
3035	0.5145917	30.2, 33	30.2, 32	20.2, 30.2		Child1 Child2
						Child1 Child2 C
<					>	м s
Total LR: 38	34.375076		Save C	ose		Father Mother


Resuls for H5 if mutations are modelled and a silent allele frequency of 0.0001 is used.




Summary of the results where different approaches to the calculations are presented. In particular, the silent allele frequency is varied, starting at 0.00001 and increasing to 0.001.



There is a 50/50 division of results favoring H4 and H5

This is a brief summary of the ESWG proficiency test 2020. Complete results are contained in the Excel summary.