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Solutions to exercises chapter 5 
 

5.6.1 Expected LRs for diallelic SNPs with different allele frequency distributions   
Different allele frequency distributions may yield different LR distributions. This information could be 

relevant when designing new DNA marker panels for kinship testing.  

Study, by simulations, LR distributions for a full sibling vs unrelated case scenario for which the 

genotypes for one diallelic SNP is available. Compare three different allele frequency distributions; minor 

allele frequency, 0.1, 0.25 and 0.5. Assume the two potential siblings Sib-1 and Sib-2 will be genotyped. 

Let H1: Sib-1 and Sib-2 are full siblings and H2: Sib-1 and Sib-2 are unrelated. Mutation rates, population 

substructure, and other complicating factors can be disregarded. 

(a) Manually define databases for each minor allele frequency given above. 

(b) Define the pedigrees and generate data using 10,000 simulations.  Set the seed to 1234. 

Compute the LR for each simulation and true hypothesis. Summarize the results as the median 

LR and the probability that the LR will exceed 1. 

(c) Repeat (a)-(b) for each minor allele frequency. 

(d) Open the frequency database containing data for 100 SNPs and repeat (b). 

(e) Repeat (d) for each minor allele frequency.  

Solution:  We start with some theoretical results. Let p be the minor allele frequency (MAF) (0.1, 0.25 

and 0.5) and q = 1-p the major. It can be shown that 

 The smallest possible LR = 0.25 occurs if Sib-1 and Sib-2 are homozygous for different alleles. 

 The largest LR occurs if they are both homozygous for the rare allele in which case 

LR = 0.25+0.5/p+0.25/p2. These maximum values are 30.25, 6.25 and 2.25 for 0.1, 0.25 and 0.5. 

Note that in general, a large number of simulations is needed to secure that the extreme LR 

values will occur in the simulations. In this case 10,000 simulations should suffice. 

 It can be shown that the mean LR is 21/16 = 1.3125 if H1 is true and 1 if H2 is true, regardless of 

allele frequencies. 

We use Familias to do the simulations. We repeat the following steps three times (one time for each 

allele frequency distribution): Add one marker with two alleles and their corresponding allele 

frequencies in the “Edit database” window. The mutation rate is set to 0. Add four individuals (mother, 

father and two children) in the “Persons” window, and create two pedigrees (full-sibs and unrelated) in 

the “Pedigrees” window. Perform the simulations via the “Simulate” button. In this solution we set the 

seed to 1234, use 10,000 simulations and set that the two children would have DNA data. 

The following results were obtained from the simulations (LR defined here as Pr(data|full 

sibs)/Pr(data|unrelated)): 

Parameter Minor allele 
frequency=0.1 

Minor allele 
frequency=0.25 

Minor allele 
frequency=0.5 

True Full sibs Unrelated Full sibs Unrelated Full 
sibs 

Unrelated 

Mean LR 1.317 0.997 1.304 1.005 1.306 0.997 
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Median LR 1.114 1.114 1.3611 1.25 1.25 0.75 

Max LR 30.25 30.25 6.25 6.25 2.25 2.25 

Min LR 0.25 0.25 0.25 0.25 0.25 0.25 

Pr(LR>1|full sibs) 0.8357 - 0.7315 - 0.5914  

Pr(LR>1|unrelated) - 0.6921 - 0.5041  0.3766 

 

From the results we can see that using a diallelic marker with minor allele frequency (MAF) 0.1 will give 

the largest maximum LR, but the median LR (when full siblings is the true relationship) is less than the 

medians for the other MAFs. MAF = 0.5 generated the largest difference between median LRs for true 

full sibs compared with true unrelated individuals. We also see that while MAF = 0.1 gives the highest 

exceedance probability for true full sibs (LR larger than 1), it also generates to highest level of false 

positives (LR > 1 for true unrelated). 

5.6.2 Comparison between expected LRs for a microhaplotype marker panel and a SNP 

marker panel  
The purpose of this exercise is to study, by simulations, LR distributions for a full sibling versus unrelated 

case scenario for which data are available for 40 microhaplotype loci (frequency distribution as in Fig. 5.7 

above). Comparisons are made to a marker panel comprising 40 diallelic SNPs (with a 0.4/0.6 frequency 

distribution per marker). Let H1: Sib-1 and Sib-2 are full siblings and H2: Sib-1 and Sib-2 are unrelated. 

Frequency data are given in the online supplementary files.. 

(a) Create a project in Familias with the microhaplotype marker data. Define the pedigrees, set the 

seed to 1234 and generate data using 10,000 simulations, conditioned both on H1 and H2. 

Summarize the results as the median LR and the probability that the LR will exceed 1. *Create 

distribution plots and exceedance plots, i.e., plot estimates of P(LR > x|Hi), i=1, 2, for a range of 

x-values. 

(b) Repeat (a), with the SNP marker data. 

(c) Compare the results from (a) and (b). 

Solution: We used Familias for the simulations and we start by creating all necessary input files. The 

allele frequency file for the microhaplotype panel is already given, and we create an analogous file for 

the SNP markers, such as: 

SNP-1  
A 0.4 
B 0.6 
  
SNP-2  
A 0.4 
B 0.6 
  
and so on until we have 40 SNPs. 
 

We then perform the simulations as in the previous exercise. We need to do this twice, one time with 
the microhaplotype panel marker data and once with the 40 SNPs panel marker data. We define four 
individuals, set up the two hypotheses (full siblings and unrelated) and run the simulations as in 5.7.1. 
We set the seed to 1234 and use 10,000 simulations.  
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The following LR distributions were obtained 

 
Figure. LR distributions for the 40 SNPs panel (left) and the 40 microhaplotypes panel (right).  

 
Figure. Exceedance plots for the 40 SNPs panel (left) and the 40 microhaplotypes panel (right).  

 
As expected, the microhaplotype panel is more informative when it comes to solving this full sibling case 
scenario. The two different marker panels comprise the same number of markers, but the 
microhaplotype panel generated larger LRs due to the higher number of alleles per marker. The median 
LR for the 40 SNPs panel was 374 for true full siblings and 0.0018 for true unrelated, and the median LR 
for the 40 microhaplotypes panel was 1,844,415 for true full siblings and 1.7E-06 for true unrelated. 

 

5.6.3 *Relationship inference from a large number of SNP markers 
In this exercise, we have SNP data for two individuals and we would like to estimate the degree of 

relationship between the two individuals. More specifically, we have genotype data for 23,742 SNPs all 

located on chromosome 1. In this exercise, we will focus on the segment approach, P(IBD ¼ 0) and 

kinship coefficient. Data are given in the online supplementary files. 

(a)  What is the estimated length of shared segments for a parent-child duo? Assume the total 

length of the markers included in the exercise is 249 cM. 

(b) What is the expected P(IBD=0) and the kinship coefficient for a first cousin relationship? 

(c) Estimate the total length of shared segments. Use a threshold of 7 cM and 100 SNPs to include a 

segment in the accumulation toward a total length. 
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(d) Estimate P(IBD=0) and the kinship coefficient. 

 

Solution: We have made a script in R which can be found at 

http://familias.name/BookKEP/PossibleSolutionUsingR.R 

(a) The estimated length for a parent/child duo is 249 cM, since a parent and a child will share one 

allele IBD for all markers.  

(b) The expected P(IBD=0) for a first cousin relationship is 0.75, and the expected kinship coefficient 

is 0.0625. 

(c) The core of the segment approach is to find sections of DNA for which the two individuals share 

at least one allele, and the genetic distance between the starting point and endpoint of such 

section is measured. In other words, a shared segment will be “broken” if the two individuals are 

homozygous for different alleles (given that we only have di-allelic SNPs). Another thing to think 

about is the centromere region. There are normally not any markers within this region, which 

means that if not accounted for the individuals might get a very large shared segment if alleles 

are shared for the SNPs surrounding the centromere region. In this case we see in the marker file 

(“chr1.map”) that SNP rs11249395 is the last marker before the centromere, and rs10907360 is 

the first SNP after the centromere. The length of the centromere is in this case 23.162743 cM, 

which means that if a segment includes the centromere, 23.162743 cM should be subtracted 

from its length. 

 

Segments are usually measured in cM, and in this case we assume that 1 Mb = 1cM. 

In practice, one would like to exclude very small segments and also segments only comprising a 

low number of SNPs. This is due to the fact that such segments may not represent a shared 

historical genealogy, and would most probably be an adventitious match. 

If we run our script, based on the assumptions above with a minimum segment threshold of 7 

cM and minimum number of SNPs threshold of 100 we get the following segments: 

[1] Segments, min_cM =  7 , min_SNP =  100 

                 [,1] [,2] 

segment_temp 20.80722 1824 

segment_temp 29.99400 2953 

segment_temp 17.75963 2120  

 

Since we don’t have any reference data for expected shared segment length for different 

relationships, given the marker data included in this exercise, we cannot really estimate the 

degree of relationship. BUT we assume that chromosome 1 is around 280 cM minus the 

centromere, which means around 257 cM. We can then roughly estimate the proportion of 

shared segments, in total for various relationships. We refer to table 5-4 and get the following 

estimates: 
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Table 1. Rough estimates of expected total shared segment length for chr 1. 

Degree of relationship Total shared 
segment length 
(mean in cM) 

Proportion of 
total shared 
segment length 

Expected total 
shared segment 
length for chr 1 
(cM) 

Parent/child 3485 1 257 

Full siblings 2629 0.754 193.9 

Grandparent/grandchild 1766 0.507 130.2 

1st cousins 874 0.251 64.5 

2nd cousins 233 0.067 17.2 

 

If we sum the length of the shared segments in our case, we end up with 68.6 cM, which is very 

close to the expected total shared segment length for first cousins (64.5 cM)! 

 

(d) In this exercise we will use the definitions of Pr(IBD = 0) and kinship coefficient that we 

introduced in the book. There might, however, be other slightly different ways to estimate these 

parameters in practice. 

We have implemented our solution in the R script that we referred to above. We get the 

following results: 

 

[1] Pr=0: 
[1] 0.7267708 
[1] Rel coeff: 
[1] 0.06236505  

 

How to interpret these value? We once again refer to Table 5-4: 

Relationship Kinship coefficient 

(Expected average proportion of shared 

alleles IBD) 

Pr(IBD = 0) Segment length 

(Total, in cM) 

Parent/child 0.5 0 3485 

Siblings 0.25 0.250 2629 

First cousins 0.0625 0.750 874 

Second cousins 0.0156 0.938 233 

Third cousins 0.00390 0.984 74 

 

From these reference values we see that our case is close to the expected values for a first 

cousin relationship. Pr(IBD=0) was estimated to 0.727 which is very close to the expected 0.75 

for a first cousin relationship. The kinship coefficient for a first cousin relationship is expected to 

be around 0.0625, which also is very close to the 0.0624 obtained in our case! 
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The R package IBDestimate (explained in Exercise 5.6 below) can also be used to solve this 

exercise. The input files need to be adjusted, and slightly different results are obtained: 

con <- url("http://familias.name/BookKEP/ex63TE.RData") 

load(con) 

close(con) # Finished loading data 

library(forrel) # install from cran once 

(est = ibdEstimate(ex63TE)) 

Estimating 'kappa' coefficients 

Initial search value: (0.333, 0.333, 0.333)  

Pairs of individuals: 1  

  5 vs. 8: estimate = (0.779, 0.221, 0), iterations = 13 

Total time: 2.51 secs 

  

id1 id2     N    kappa0    kappa1      kappa2 

1   5   8 23742 0.779 0.221 0 

Shows estimate in IBD triangle: 

showInTriangle(est, labels = TRUE) 

 

 

5.6.4 Biogeographical ancestry prediction 
Assume that we want to predict from which population Mr X originates and that we have DNA data for a 

single SNP marker, for which this unknown individual is homozygous for allele T. We have three different 

populations P1, P2 and P3. With the following allele frequencies P1 (T:0.1, C:0.9), P2 (T:0.9, C:0.1) and 

P3, (T:0.5, C:0.5) . Use a Bayesian approach and calculate the posterior probabilities for the hypotheses 

that Mr. X belongs to P1, P2 and P3. Assume HWE and a flat prior.  

Solution: Bayes theorem gives, using R: 

pP1 = 0.1^2; pP2 = 0.9^2; pP3 = 0.5^2; tot = pP1 + pP2 +pP3; 

pP1/tot # Probability of belonging to P1 

pP2/tot # Probability of belonging to P2 

pP3/tot # Probability of belonging to P3 



 

7 
 

This gives that the probabilities are respectively 0.009, 0.757, 0.234 and we see that Mr X as expected 

most likely comes from the population for which T is most frequent, i.e., P2. The posterior probability 

that X comes from this population is 0.757. 

 

5.6.5 Finding LR distributions for marker panels with length based allele frequencies and 

marker panels with DNA sequence based allele frequencies  
In Example 5.1, we compared the difference in LRs reflecting if sequence variation in STR alleles is 

accounted for. We considered two single markers. In this exercise, we will repeat this approach by 

comparing expected LRs for the 27 STR markers included in the ForenSeq marker panel. We have access 

to length-based allele frequencies and to sequence-based allele frequencies for a Swedish population. 

We would like to study how informative this panel is for a first cousin versus unrelated case. Allele 

frequencies are given in the online supplementary files. 

(a) For each database, create a project in Familias and define persons and pedigrees.  

(b) Perform simulations and estimate the median LR, mean LR, and 1%-99% intervals. Estimate 

exceedance probabilities (LR > 10, LR > 100, LR > 1000) for the two different allele frequency 

distributions. Set the seed to 1234 in the simulation window in Familias and perform 10,000 

simulations for each allele database and true hypothesis. (In this exercise we ignore possible 

impact of linkage). 

(c) *Plot LR distributions and exceedance probability distributions. 

 

Solution: In this exercise we once again use Familias to perform the simulations. We do this in a similar 

fashion as we have done in exercises 5.7.1 and 5.7.2. 

The results are given below. Note, however, that numbers may differ slightly depending on how the 

pedigrees are defined. 

  

The central part of the distributions is best measured by the median and does not differ much. 

Obviously, there will be more large LRs when the sequence database is used, but not terribly so 

according to the above simulations. 

5.7.6 Estimation of IBD coefficients  
In this exercise, we will estimate IBD coefficients using R. 

a) Create and plot a first cousin pedigree. Hint: See documentation of the function cousinPed in the R 

library pedtools: 

install.packages("pedtools") 

TRUE median mean 1 % 99 % LR10 LR100 LR1000

exc seq cousins 3.377 33 0.091 498.6 26.62 % 4.38 % 0.54 %

incl seq cousins 4.68 165.3 0.084 1920 36.41 % 9.78 % 1.59 %

exc seq unrelated 0.3128 1.059 0.0174 10.65 1.10 % 0.40 % 0.00 %

incl seq unrelated 0.2397 1.037 0.011 13.42 1.51 % 0.04 % 0.00 %
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library(pedtools) 

x = cousinPed(1) 

plot(x) 

b) Find the kappa coefficients between the first cousins. Hint: See the documentation of the function 

kappaIBD in the R library ribd. 

install.packages("ribd") 

library(ribd) 

kappaIBD(x, leaves(x)) 

[1] 0.75 0.25 0.00 

c) Simulate 100 equifrequent SNP markers. Hint: See documentation of the function markerSim in R 

library forrel 

install.packages("forrel") 

library(forrel) 

x = markerSim(x, N = 100, alleles = 1:2, seed = 12345, verbose = FALSE) 

An example how “x” may look like: 

> x 
 id fid mid sex <1> <2> <3> <4> <5> 
  1   *   *   1 1/2 1/1 2/2 1/2 1/2 
  2   *   *   2 1/2 1/2 2/2 2/2 1/1 
  3   1   2   1 2/2 1/1 2/2 1/2 1/1 
  4   *   *   2 1/2 2/2 1/2 1/1 1/2 
  5   1   2   1 1/1 1/2 2/2 1/2 1/1 
  6   *   *   2 1/1 2/2 1/1 1/2 2/2 
  7   3   4   1 1/2 1/2 2/2 1/2 1/1 
  8   5   6   1 1/1 2/2 1/2 1/2 1/2 
Only 5 (out of 100) markers are shown. 
 
d) Estimate the IBD coefficients. Pedigree information is not used. Hint: See documentation of the 

appropriate function in R library forrel 

ibdEstimate (x, ids = leaves(x))  

Estimating 'kappa' coefficients 
Initial search value: (0.333, 0.333, 0.333)  
Pairs of individuals: 1  
  7 vs. 8: estimate = (0.539, 0.461, 0), iterations = 8 
Total time: 0.017 secs 
  id1 id2   N      k0      k1 k2 
1   7   8 100 0.53852 0.46148  0 
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This compares well with the theoretical values 0.75, 0.25 and 0. However, we can’t expect to get these 

theoretical values, even with an extremely large number of markers. The kappa values (0.75, 0.25, 0) are 

the theoretical or average values for first cousins. Some first cousins may be closer to unrelated, some 

closer to half-sibs. 

 

e) Try different seeds and reestimate.  

x = markerSim(x, N = 100, alleles = 1:2,seed = 17, verbose = FALSE) 

ibdEstimate (x, ids = leaves(x)) 

Estimating 'kappa' coefficients 
Initial search value: (0.333, 0.333, 0.333)  
Pairs of individuals: 1  
  7 vs. 8: estimate = (0.908, 0.032, 0.06), iterations = 36 
Total time: 0.007 secs 
  id1 id2   N      k0      k1      k2 
1   7   8 100 0.90849 0.03154 0.05997 
 
f) Increasing the number of markers (say to N = 10,000) will yield kappa values that fit with the 

theoretical values 0.75, 0.25, and 0. Verify this. 

x = markerSim(x, N = 10000, alleles = 1:2, seed=113,verbose = FALSE) 

ibdEstimate (x, ids = leaves(x)) 

Estimating 'kappa' coefficients 

Initial search value: (0.333, 0.333, 0.333)  

Pairs of individuals: 1  

  7 vs. 8: estimate = (0.764, 0.221, 0.015), iterations = 31 

Total time: 0.147 secs 

  id1 id2     N      k0      k1     k2 

1   7   8 10000 0.76364 0.22116 0.0152 

 

g) Show the result in the IBD triangle. Hint: Use the function showInTriangle. 

x = markerSim(x, N = 10000, alleles = 1:2, seed=113,verbose = FALSE) 

est=ibdEstimate (x, ids = leaves(x)) 

showInTriangle(est, labels = TRUE) 
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