# Forensics II: Further interpretation of the likelihood ratio and exclusion power

Thore Egeland

Norwegian University of Life Sciences

thore.egeland@nmbu.no

- ► Formulation of hypotheses using IBD parameters.
- Testing in forensic genetics vs classical approaches
- Exclusion power.
- Bayesian approach: Including prior, non-DNA information. Controversial also in forensics.
- Decision theory: Justify thresholds used for conclusions.
- Further discussion of LR.

•  $H_1$ : AF biological father of CH.

 $\blacktriangleright$   $H_2$ : AF and CH unrelated.

Parametric reformulation:

- $H_1: \kappa = (0, 1, 0)$
- $H_2: \kappa = (1, 0, 0)$

Generalisation: consider all (non-inbred) alternatives:

• 
$$H_1: \kappa = (0, 1, 0)$$

•  $H_2: \kappa \neq (0, 1, 0)$ 

Forensic genetics: I have never seen latter formulation and classical p-value based testing outside academia.[Kaur, PhD, NMBU, 2016]

## ► Generally:

• Power calculations can be used to determine sample size

### ► Forensic genetics:

- How many and who should we genotype?
- How many, which markers should be used?
- ...

# Generic example...



What data do we need to exclude John Doe as the first cousin of the King given that he is unrelated?

# Exclusion Power (EP). Two equifrequent SNPs



EP = P("claim" incompatible with genotypes | "true") $EP_1 = P(g_{AF} = 2/2) = 0.5^2 = 0.25, EP_2 = 0$  $EP = 1 - (1 - EP_1) \cdot (1 - EP_2) = 0.25$  for both markers

Method 1 (used, not recommended): Assume AF is not excluded. Calculate EP not using genotype data for AF. If EP is close to 1, report strong evidence in favour of paternity versus unrelated

Method 2 (recommended): compute the LR as before.

## EP

- Does not use the genotype of the alleged father, only that of the child
- Can be computed prior to having any alleged father
- E.g., to judge whether to do a database search (how many possible fathers to expect)

$$\blacktriangleright EP = P(LR = 0 \mid H_D)$$

### LR

- Uses all available genetic information on both individuals
- Is therefore better informed than EP

# Bayesian approach: Motivation



*H*<sub>1</sub> more likely *apriori* than *H*<sub>2</sub> based on age information
How do we include non-DNA information? Prior

- ▶ Specify  $P(H_P)$ ,  $P(H_D)$ , typically subjectively or
- Prior odds:  $P(H_P)/P(H_D)$
- Flat prior  $P(H_P) = P(H_D) = 0.5$  often used.
- ▶ I avoid using the common *uninformative prior* for flat prior.

## Bayes theorem on odds form



## Assume $\blacktriangleright$ prior odds $\frac{P(H_1)}{P(H_2)} = 1000.$ Then

prior odds 
$$* LR = posterior odds$$
,  
1000  $* 0.66 = 666$ .

#### Interpretation: $H_1$ is 666 times more probable than $H_2$ .

## Posterior probability of paternity. Bayes theorem

$$P(H_1 \mid E) = \frac{P(E \mid H_1)P(H_1)}{P(E \mid H_1)P(H_1) + P(E \mid H_2)P(H_2)}$$
  
= "Probability of  $H_1$  given evidence"

Important special forensic case:  $P(H_1) = P(H_2) = 0.5$ . The Essen-Möller index for paternity:

$$W = P(H_1 \mid E) = \frac{LR}{1 + LR}.$$

Allows inteligible statements like: "The probability that he is the father is 99.73%". Problem: the prior ...

- Do we report LR, posterior probability or posterior odds?
- Or should we report on a verbal scale? Both numbers and verbal statements?
- How do we choose thresholds?

# One Verbal Scale for LR

| LR                | Expert guidance*                                 |
|-------------------|--------------------------------------------------|
| 1                 | do not support one<br>proposition over the other |
| 2 - 10            | weak support                                     |
| 10 - 100          | moderate support                                 |
| 100 - 1000        | moderately strong support                        |
| 1000 - 10000      | strong support                                   |
| 10000 - 1 million | very strong support                              |
| Over 1 million    | extremely strong support                         |

\*ENFSI Guideline for Evaluative Reporting in Forensic Science

# How do we specify thresholds?. Decision theory

- Blackstone's ratio:
- $(1 + c_2)/(1 + c_1) = 10$  (in practice much higher.)



Make no decision: cost = 1

# Optimal decision rule



If  $c_1$  and  $c_2$  are specified, an optimal decision rule can be determined. See Tillmar and Mostad (2014) for an application

# Adding evidence I

• If prior odds = 0 or LR = 0

• Assume prior odds > 0 and LR > 0. Then

log(prior odds) + log(LR) = log(posterior odds)

log(LR) = log<sub>10</sub>(LR) (unit called "ban" - Alan Turing)

\*Good IJ (1985)

# Adding evidence II



- Egeland, Kling, Mostad. Academic Press, 2015.
- ► IJ Good. Bayesian Statistics, 1985.
- Making Sense of Forensic genetics
- Tillmar, Mostad. FSI: Genetics, 2014.