Forensics II: Further interpretation of the likelihood ratio and exclusion power

Thore Egeland

Norwegian University of Life Sciences
thore.egeland@nmbu.no

Contents

- Formulation of hypotheses using IBD parameters.
- Testing in forensic genetics vs classical approaches
- Exclusion power.
- Bayesian approach: Including prior, non-DNA information. Controversial also in forensics.
- Decision theory: Justify thresholds used for conclusions.
- Further discussion of LR.

Alternative formulations of hypotheses. p-values?

- H_{1} : AF biological father of CH .
- H_{2} : AF and CH unrelated.

Parametric reformulation:

- $H_{1}: \kappa=(0,1,0)$
- $H_{2}: \kappa=(1,0,0)$

Generalisation: consider all (non-inbred) alternatives:

- $H_{1}: \kappa=(0,1,0)$
- $H_{2}: \kappa \neq(0,1,0)$

Forensic genetics: I have never seen latter formulation and classical p-value based testing outside academia.[Kaur, PhD, NMBU, 2016]

Power

- Generally:
- Power calculations can be used to determine sample size
- Forensic genetics:
- How many and who should we genotype?
- How many, which markers should be used?
- ...

Generic example...

- What data do we need to exclude John Doe as the first cousin of the King given that he is unrelated?

Exclusion Power (EP). Two equifrequent SNPs

$E P=P($ "claim" incompatible with genotypes | "true") $E P_{1}=P\left(g_{A F}=2 / 2\right)=0.5^{2}=0.25, E P_{2}=0$
$E P=1-\left(1-E P_{1}\right) \cdot\left(1-E P_{2}\right)=0.25$ for both markers

- forrel::exclusionPower

Two approaches to paternity testing: EP versus LR

- Method 1 (used, not recommended): Assume AF is not excluded. Calculate EP not using genotype data for AF. If EP is close to 1 , report strong evidence in favour of paternity versus unrelated
- Method 2 (recommended): compute the LR as before.

Differences between these approaches

EP

- Does not use the genotype of the alleged father, only that of the child
- Can be computed prior to having any alleged father
- E.g., to judge whether to do a database search (how many possible fathers to expect)
- $E P=P\left(L R=0 \mid H_{D}\right)$

LR

- Uses all available genetic information on both individuals
- Is therefore better informed than EP

Bayesian approach: Motivation

- H_{1} more likely apriori than H_{2} based on age information
- How do we include non-DNA information? Prior

Bayesian framework

- Specify $P\left(H_{P}\right), P\left(H_{D}\right)$, typically subjectively or
- Prior odds: $P\left(H_{P}\right) / P\left(H_{D}\right)$
- Flat prior $P\left(H_{P}\right)=P\left(H_{D}\right)=0.5$ often used.
- I avoid using the common uninformative prior for flat prior.

Bayes theorem on odds form

Prior and posterior odds

Assume

- prior odds $\frac{P\left(H_{1}\right)}{P\left(H_{2}\right)}=1000$.

Then

$$
\begin{aligned}
\text { prior odds } * \mathrm{LR} & =\text { posterior odds } \\
1000 * 0.66 & =666
\end{aligned}
$$

Interpretation: H_{1} is 666 times more probable than H_{2}.

Posterior probability of paternity. Bayes theorem

$$
\begin{aligned}
P\left(H_{1} \mid E\right) & =\frac{P\left(E \mid H_{1}\right) P\left(H_{1}\right)}{P\left(E \mid H_{1}\right) P\left(H_{1}\right)+P\left(E \mid H_{2}\right) P\left(H_{2}\right)} \\
& =\text { "Probability of } H_{1} \text { given evidence" }
\end{aligned}
$$

Important special forensic case: $P\left(H_{1}\right)=P\left(H_{2}\right)=0.5$.
The Essen-Möller index for paternity:

$$
W=P\left(H_{1} \mid E\right)=\frac{L R}{1+L R}
$$

Allows inteligible statements like:
"The probability that he is the father is 99.73% ".
Problem: the prior ...

Main practical problems in forensics

- Do we report LR, posterior probability or posterior odds?
- Or should we report on a verbal scale? Both numbers and verbal statements?
- How do we choose thresholds?

One Verbal Scale for LR

	Lerpet guilance:
1	I. do not support one proposition over the other
$2-10$	weak support
$10-100$	moderate support
$100-1000$	moderately strong support
$1000-10000$	strong support
$10000-1$ million	very strong support
Over 1 million	extremely strong support

*ENFSI Guideline for Evaluative Reporting in Forensic Science

How do we specify thresholds?. Decision theory

- Blackstone's ratio:
$\left(1+c_{2}\right) /\left(1+c_{1}\right)=10$ (in practice much higher.)

Better that ten GUILTY PERSONS ESGAPE THAN THAT ONE INNOCENT SUFFER

- Sir Willam Blackstone (1765)

Make no decision: cost $=1$

Optimal decision rule

If c_{1} and c_{2} are specified, an optimal decision rule can be determined.
See Tillmar and Mostad (2014) for an application

Adding evidence I

- If prior odds $=0$ or $L R=0$ posterior odds $=0$
- Assume prior odds >0 and $L R>0$. Then
$\log ($ prior odds $)+\log (L R)=\log ($ posterior odds $)$
- $\log (\mathrm{LR})=\log _{10}(\mathrm{LR})$ (unit called "ban" - Alan Turing)
*Good IJ (1985)

Adding evidence II

References

- Egeland, Kling, Mostad. Academic Press, 2015.
- IJ Good. Bayesian Statistics, 1985.
- Making Sense of Forensic genetics
- Tillmar, Mostad. FSI: Genetics, 2014.

