Lecture 7:
 Estimation of pairwise relatedness and
 Pedigree reconstruction

Magnus Dehli Vigeland
Statistical methods in genetic relatedness and pedigree analysis
NORBIS course, $6^{\text {th }}-10^{\text {th }}$ of January 2020 , Oslo

Maximum likelihood estimation of $\kappa=\left(\kappa_{0}, \kappa_{1}, \kappa_{2}\right)$

- Thompson (1975)
- Given: marker genotypes for two individuals
- The likelihood function

$$
L(\kappa)=P(\text { genotypes } \mid \kappa)
$$

- Find the point k which maximizes L !
- Called the maximum likelihood estimate (MLE)
- Assumptions:
- known allele freqs
- HWE
- no inbreeding

The likelihood function

- A single marker:
- Genotypes G_{1} and G_{2} observed in the two individuals
- Idea for computing $\mathrm{L}(\kappa)$: Condition on IBD status 0,1 or 2

$$
\begin{aligned}
L(\kappa)=P\left(G_{1}, G_{2} \mid \kappa\right)= & P\left(G_{1}, G_{2} \mid U N\right) \kappa_{0}+ \\
& P\left(G_{1}, G_{2} \mid P O\right) \kappa_{1}+ \\
& P\left(G_{1}, G_{2} \mid M Z\right) \kappa_{2}
\end{aligned}
$$

```
UN = unrelated
PO = parent/offspr
MZ = monozygotic
```

- With several independent markers:

$$
L(k)=\prod L_{i}(k)
$$

What are we estimating?

Answer: The realised coefficients!

Implementations

- R
- pedtools + forrel (imports package maxLik for the ML-estimation)
- SNPrelate, GWASTools (optimized for association studies)
- CrypticIBDcheck (as above, slow with many markers)
$-\quad+++$
- Other
- PLINK
- KING
- Beagle
$-\quad+++$

Example: From the manual of GWAStools

Let's look at some examples!

Family 22

Pedigree 22 - OK

Family 22

universitetssykehus
Statistical methods in genetic relatedness and pedigree analysis

Pedigree 32-OK

Family 32

k0
universitetssykehus
Statistical methods in genetic relatedness and pedigree analysis

Pedigree 16...something's wrong

Family 16

k0

Pedigree 16 - corrected

Family 16

ko
universitetssykehus

Pedigree 41...another error!?

Family 41

k0

Example: Pedigree 41 - corrected

Family 41

A large pedigree

Genotyped for linkage analysis: Affymetrix 50k array

Results

Potential problems

- The maximum likelihood calculation is sensitive to
- number of markers
- correct allele frequencies
- Use simulation to investigating the impact of these

Simulation example

- These simulations are good to have in mind when encountering weird results

Example: Pedigree L2875 (hypercholesterolemia)

Family 1

Genotyped with 2000 SNPs

Example: Pedigree L2875 (hypercholesterolemia)

Family 1

Assuming equifrequent SNPs

Example: Pedigree L2875-corrected

Pedigree reconstruction

Goal:
 Reconstruct the complete pedigree from genotype data

- Step 1: Genders
- Step 2: Estimate pairwise relationships
- Connect parent-child
- Exploit siblings
- Step 3: Solve the puzzle

Alternative method: R/pedbuildr

Idea:

- Generate a list of all possible pedigrees connecting the individuals
- Compute the likelihood of each pedigree
- Sort and output the best pedigrees

