Relatedness 1:
 IBD and coefficients of relatedness

or

What does it mean to be related?

Magnus Dehli Vigeland
Statistical methods in genetic relatedness and pedigree analysis
NORBIS course, $6^{\text {th }}-10^{\text {th }}$ of January 2020 , Oslo

Plan

- Introduction
- What does it mean to be related?
- Pedigree-based meassures of relatedness:
- The concept of IBD (identical by descent)
- Coefficient of kinship/inbreeding
- The IBD coefficients $\kappa_{0}, \kappa_{1}, \kappa_{2}$
- Jacquard's 9 identity coefficients
- Relatedness coefficients in R

What does it mean to be related?

- Social anthropology "definition":
- being connected through a pedigree
- having a common ancestor...not too far back
- Genetic "definition":
- sharing DNA?
- (more than unrelated people)
- To make all this precise, we need some terminology.......

IBD and autozygosity

- IBD = "Identical by descent"
= identical alleles with a common origin in the given pedigree
- IBS = "Identical by state" = identical alleles
- autozygous = homozygous + IBD

Relatedness yellow belt: Coefficient of kinship/inbreeding

- Wright (1921): The kinship coefficient φ between P and Q

(1889-1988)

$$
\varphi_{P, Q}=P(\text { random allele of } \mathrm{P} \text { is IBD with random allele of } \mathrm{Q})
$$

```
Mendel's \longrightarrow}=P(R\mathrm{ receive IBD alleles from her parents )
    = P(R is autozygous )
    = f
```

P and Q related
$\varphi_{P, Q}>0$

Examples

$$
\begin{aligned}
f & =P(\text { A/A autozygous }) \cdot 2 \\
& =0.5^{4} \cdot 2 \\
& =\frac{1}{8} \quad \text { A or }
\end{aligned}
$$

Wright's path formula

- Simple form works in most cases:

$$
f_{R}=\varphi_{P, Q}=\sum_{v}\left(\frac{1}{2}\right)^{|v|+1}
$$

- Translation:

- Find all paths v between P and Q
- For each path compute $0.5^{|v|+1}$
- Take the sum!
- Example: 2 paths
- 7-4-1-5-8 (length $=4$)

$$
\varphi=0.5^{5}+0.5^{5}=\frac{1}{16}=0.0625
$$

- 7-4-2-5-8 (length $=4$)

Wright's path formula in full generality

$$
\varphi_{P, Q}=\sum_{A} \sum_{v}\left(\frac{1}{2}\right)^{|v|+1}\left(1+f_{A}\right)
$$

- sum over all common ancestors A of P and Q...
- ... and all non-collapsing paths v fra P til Q via A
- $\quad|v|$ is the length of v
- f_{A} is the inbreeding coefficient of A

Applicable to any pairwise relationship, however complex!

Interpretations of the inbreeding coefficient

autosomal

$$
\begin{aligned}
f & =P(\text { random locus autozygous }) \\
& =\text { expected fraction of the genome that is autozygous }
\end{aligned}
$$

Parents	f (of child)	
father/daughter full sibs	$1 / 4$	
uncle/niece	$1 / 8$	$1 / 16$
first cousins	$1 / 64$	
second cousins	$1 / 256$	
third cousins		father/daughter incest: $f=0.25$

Red belt: The IBD triangle

universitetssykehus
Statistical methods in genetic relatedness and pedigree analysis

IBD coefficients: Warm-up

- Summary so far:
- Two individuals are related if they can have IBD alleles
- Their kinship coefficient meassures the amount of IBD sharing
- Natural generalisation:
- How many alleles are IBD in each locus?

Humans are
diploid

IBD = 0, 1 or 2

1 allele IBD
2 alleles IBD
0 alleles IBD

IBD coefficients: Definiton

- Given two (non-inbred) individuals

- For a random autosomal locus

$$
\begin{aligned}
& \kappa_{0}=P(0 \text { alleles IBD }) \\
& \kappa_{1}=P(1 \text { alleles IBD }) \\
& \kappa_{2}=P(2 \text { alleles IBD })
\end{aligned}
$$

IBS = Identical by state
IBD = Identical by descent

- Note: $\kappa_{0}+\kappa_{1}+\kappa_{2}=1$

Example 1: Parent vs child

$$
\begin{aligned}
& \kappa_{0}=0 \\
& \kappa_{1}=1 \\
& \kappa_{2}=0
\end{aligned}
$$

- Note the difference between IBD and IBS:

Don't be deceived by appearences!

More "trivial" examples

- MZ twins
- Unrelated inviduals

$$
\begin{aligned}
& \kappa_{0}=0 \\
& \kappa_{1}=0 \\
& \kappa_{2}=1
\end{aligned}
$$

$$
\begin{aligned}
& \kappa_{0}=1 \\
& \kappa_{1}=0 \\
& \kappa_{2}=0
\end{aligned}
$$

The case of full siblings

The relatedness triangle

Recall: $\kappa_{0}+\kappa_{1}+\kappa_{2}=1$

The relatedness triangle

Recall: $\kappa_{0}+\kappa_{1}+\kappa_{2}=1$

All have $\kappa=(1 / 2,1 / 2,0)$

NB: Some relationships coincide!

An important identity

$$
\varphi=\frac{1}{4} \kappa_{1}+\frac{1}{2} \kappa_{2}
$$

- After a short coffee break:

Black belt: Jacquard's identity coefficients

Albert Jacquard (1925-2013)

Black belt: Jacquard's identity coefficients

- Jacquard (1970):
- Structures Génétiques des Populations
- Motivation: Inbred relationships
- $\kappa_{0}, \kappa_{1}, \kappa_{2}$ are not well defined
- Example:

Albert Jacquard (1925-2013)

What's the IBD status here??? 1 or 2? Cannot be summarised in one number.

Configuration:

A	\leftarrow father's alleles
A $-A$	\leftarrow child's alleles

Jacquard's 9 coefficients

- Two individuals, two alleles each:
- $\quad \leftarrow$ alleles of individual 1
- $\quad \leftarrow$ alleles of individual 2

9 possible IBD configurations:

- Any pairwise relationship can be summarised by the relative frequencies of each of these.

Jacquard's condensed identity coefficients:

$$
\Delta_{1}, \Delta_{2}, \ldots, \Delta_{9}
$$

Very simple with non-inbred individuals

A/B
C/D

\longrightarrow	$\bullet \bullet$	\bullet							
0	0	0	0	\bullet	\bullet	\bullet			
	0	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet		

- - \leftarrow alleles of individual 1
- - \leftarrow alleles of individual 2

Non-trivial example

Suppose the parents are first cousins, but not themselves inbred

The Jacquard coefficients for the father vs child:

\longrightarrow	$\bullet \bullet$	\bullet	$\bullet \bullet$	\bullet	\bullet	\bullet	\bullet	\bullet	\bullet
0	0	0	0	$\frac{1}{16}$	0	\bullet	\bullet	\bullet	\bullet
	\bullet								

ribd: Pedigree-based relatedness coefficients

Main functions

- kinship(x, ids)
- kappaIBD(x, ids)

- condensedIdentity(x, ids)

Try it out!

> library(ribd)
> $x=$ nuclearPed(2)
> plot(x)

| $>$ | kinship(x) | | | |
| :--- | ---: | ---: | ---: | ---: | ---: |
| | 1 | 2 | 3 | 4 |
| 1 | 0.50 | 0.00 | 0.25 | 0.25 |
| 2 | 0.00 | 0.50 | 0.25 | 0.25 |
| 3 | 0.25 | 0.25 | 0.50 | 0.25 |
| 4 | 0.25 | 0.25 | 0.25 | 0.50 |

> kappaIBD(x)
id1 id2 kappa0 kappa1 kappa2

1	2	1.00	0.0	0.00
1	3	0.00	1.0	0.00
1	4	0.00	1.0	0.00
2	3	0.00	1.0	0.00
2	4	0.00	1.0	0.00
3	4	0.25	0.5	0.25

universitetssykehus

