Lecture 1

Introduction I:
 Pedigrees, genetics and probabilities

Magnus Dehli Vigeland
Statistical methods in genetic relatedness and pedigree analysis
NORBIS course, $6^{\text {th }}-10^{\text {th }}$ of January 2020, Oslo

Outline

- Part I: Pedigrees
- Pedigree symbols and terminology
- Some common relationships
- Part II: Genetics
- Terminology
- Locus, allele, genotype, marker
- Mendelian inheritance
- Autosomal, X, Y
- Part III: Pedigree likelihoods
- Motivation: Real-life problems
- Ingredients:
- Hardy-Weinberg equilibrium
- Mendelian transition probabilities
- Likelihoods by hand
- Computer algorithms

Outline

- Part I: Pedigrees
- Pedigree symbols and terminology
- Some common relationships
- Part II: Genetics
- Terminology
- Locus, allele, genotype, marker
- Mendelian inheritance
- Autosomal, X, Y
- Part III: Pedigree likelihoods
- Motivation: Real-life problems
- Ingredients:
- Hardy-Weinberg equilibrium
- Mendelian transition probabilities
- Likelihoods by hand
- Computer algorithms

Pedigrees: Symbols and terminology

Founders:
No parents included
$\square=$ male
$\bigcirc=$ female

Pedigrees: Symbols and terminology

Pedigrees: Symbols and terminology

Alternative ways of drawing pedigrees

Standard

Simplified

Directed acyclic graph

Some common relationships

(and some less common...)

Cousin relationships

Full siblings

First cousins

Second cousins

Cousin relationships

First cousins once removed

Cousin relationships

Aunt-nephew

Cousin relationships

Grandaunt

Half cousin relationships

Half siblings (paternal)

Half first cousins

Half second cousins

Half cousin relationships

Half aunt / half nephew

Half cousin relationships

More complicated relationships

3/4 siblings

What about this?

Double first cousins

The connoisseur's favourite!

Quadruple half first cousins!

Outline

- Part I: Pedigrees
- Pedigree symbols and terminology
- Some common relationships
- Part II: Genetics
- Terminology
- Locus, allele, genotype, marker
- Mendelian inheritance
- Autosomal, X, Y
- Part III: Pedigree likelihoods
- Motivation: Real-life problems
- Ingredients:
- Hardy-Weinberg equilibrium
- Mendelian transition probabilities
- Likelihoods by hand
- Computer algorithms

Genetics

- Human genome:
- Diploid
- 22 pairs of autosomes
- Sex chroms: X and Y
- Some important terms
- Locus
- Allele
- Genotype
- Genetic markers
- SNPs

Locus, allele, genotype

Homologous chromosomes

- LOCUS = a specific place in the genome, e.g. a base pair, a gene or a region
- ALLELE = any of the alternative forms of a locus
- GENOTYPE = the set of alleles carried by an individual at a given locus

Genetic markers

- Small parts of the genome which ...
- have known position
- vary in the population
- are easy to genotype

- SNPs (single nucleotide polymorphisms)
- two alleles
= minor allele frequency
- usual requirement: MAF > 1\%
- very common in the genome (millions!)
- used in medical genetics +++
- STRs (short tandem repeats) = microsatellites
- consecutive repeats of 2-5 bases
- multiallelic: 5-50 alleles
- allele names: \# repeats
- used in forensics
...ACG TTAG TTAG TTAG TTAG AAC..
...ACG TTAG TTAG AAC..
...ACG TTAG TTAG TTAG TTAG TTAG AAC..

Outline

- Part I: Brief introductions
- Pedigrees symbols and terminology
- Some common relationships
- Genetics
- Locus, allele, genotype, marker
- Mendelian inheritance
- Autosomal
- X, Y
- Part II: Pedigree likelihoods
- Motivation: Real-life problems
- Ingredients:
- Hardy-Weinberg equilibrium
- Mendelian transition probabilities
- Likelihoods by hand
- Computer algorithms

Mendelian inheritance: Autosomal (chromosomes 1-22)

Example: autosomal marker with 3 alleles: A, B, C

Mendelian inheritance: X-linked

Example: X-linked marker with 3 alleles: A, B, C

Mendelian inheritance: Y -linked

Example: Y-linked marker with 2 alleles: A, B

Assumptions throughout (most of) this course

- Diploid species
- No cytogenetic abnormalitites
- No de novo mutations

COFFEE BREAK!

Outline

- Part I: Pedigrees
- Pedigree symbols and terminology
- Some common relationships
- Part II: Genetics
- Terminology
- Locus, allele, genotype, marker
- Mendelian inheritance
- Autosomal, X, Y
- Part III: Pedigree likelihoods
- Motivation: Real-life problems
- Ingredients:
- Hardy-Weinberg equilibrium
- Mendelian transition probabilities
- Likelihoods by hand
- Computer algorithms

Questions related to pedigrees with genotypes

- Will my child have the disease?
- Is NN the true father?
- Brothers or half brothers?
- Is NN related to this family? How?
- Predict the missing genotype?

Questions related to pedigrees with genotypes

Disease locus: alleles D and N

Will my child have the disease?

Questions related to pedigrees with genotypes

Suppose:

- 11 is common
- 18 is rare

Who is the true father?

Questions related to pedigrees with genotypes

Brothers or half brothers?

Questions related to pedigrees with genotypes

Is this woman related to the family?

Questions related to pedigrees with genotypes

Can we predict the missing genotype?

- Common to all of these: The need to calculate probabilities
$P($ genotypes | pedigree, marker info, allele freqs, ..)
- Called the likelihood of the pedigree.

Ingredients for likelihood computations

Ingredient 1: Founder probabilities

- Suppose the allele frequencies are:

$$
\begin{aligned}
& P(A)=p \\
& P(B)=q
\end{aligned}
$$

- What are the frequencies of the genotypes $A A, A B, B B$?
- Under certain assumptions, the alleles can be treated as independent:

$$
\begin{gathered}
P(A A)=P(A) * P(A)=p^{2} \\
P(B B)=P(B) * P(B)=q^{2} \\
P(A B)=P(A B \text { or } B A)=p q+q p=2 p q \\
\uparrow \\
\text { two possible orderings! }
\end{gathered}
$$

The Hardy-Weinberg principle

Assumptions:

- infinite population
- random mating
- no selection
- no migration

Hardy (1908): Shows
«... using a little mathemathics of the multiplication table kind»:

- allele freqs are unchanged from generation to generation
- after 1 generation the genotype freqs stay unchanged

$$
\begin{aligned}
& P(A A)=p^{2} \\
& P(A B)=2 p q \\
& P(B B)=q^{2}
\end{aligned}
$$

HW equilibrium

$$
\begin{aligned}
& p_{A A}=p^{2} \\
& p_{A B}=2 p q \\
& p_{B B}=q^{2}
\end{aligned}
$$

$$
\begin{aligned}
& p=p_{A A}+0.5 p_{A B} \\
& q=p_{B B}+0.5 p_{A B}
\end{aligned}
$$

Ingredient 2: Transition probabilities

$P\left(g_{\text {child }} \mid g_{\text {parents }}\right)$

- Easy - follows directly from Mendel's laws!

Example

$$
L=P\left(g_{1}, g_{2}, g_{3}\right)
$$

$$
=P\left(g_{1}\right) \cdot P\left(g_{2}\right) \cdot P\left(g_{3} \mid g_{1}, g_{2}\right)
$$

$$
=P(A A) \cdot P(A B) \cdot P(A B \mid \text { parents }=A A \times A B)
$$

$$
=p^{2} \cdot 2 p q \cdot 0.5
$$

Example on X

$$
\begin{aligned}
& L=P(\text { genotypes } \mid \text { pedigree }, p, q) \\
& =\stackrel{1}{p} \cdot \stackrel{2}{2 p q} \cdot \stackrel{3}{0.5} \cdot \stackrel{4}{0.5} \cdot{ }^{q^{2}} \cdot \stackrel{6}{1} \\
& =0.5 p^{2} q^{3}
\end{aligned}
$$

Ingredient 3: How to deal with untyped individuals

Solution: Sum of all possible genotypes for the untyped

$$
\begin{aligned}
& P\left(g_{1}, g_{3}\right)=\sum_{g_{2}} P\left(g_{1}, g_{2}, g_{3}\right)=\sum_{g_{2}} P\left(g_{1}\right) \cdot P\left(g_{2}\right) \cdot P\left(g_{3} \mid g_{1}, g_{2}\right) \\
& =P(A A) \cdot P(A A) \cdot P(A B \mid A A \times A A)+P(A A) \cdot P(A B) \cdot P(A B \mid A A \times A B)+P(A A) \cdot P(B B) \cdot P(A B \mid A A \times B B) \\
& =p^{2} \cdot p^{2} \cdot 0 \\
& =p^{3} q+p^{2} q^{2}=p^{2} q(p+q)=p^{2} q
\end{aligned}
$$

Pedigree likelihood: General formula

- Given:
- pedigree with n individuals
- k members are genotyped: $g_{1}, g_{2}, \ldots, g_{k}$
non-founders
- Then:

$$
P\left(g_{1}, \ldots, g_{k}\right)=\sum_{G_{1}} \sum_{G_{2}} \ldots \sum_{G_{n}} P \overbrace{\left(g_{1}\right) \cdots P\left(g_{j}\right) \cdot P(\overbrace{j+1} \mid \text { par }) \cdots P\left(g_{n} \mid \text { par }\right)}
$$

- If everyone is typed: Only one term \rightarrow easy

$$
G_{i}=\text { set of possible }
$$

$$
\text { genotypes for individual } i
$$

- Number of terms grows exponentially in \#(untyped)
- but clever algorithms exist!

Computer algorithms for pedigree likelihoods

- Elston-Stewart algorithm
- a peeling algorithm
- linear in pedigree size!
- Lander-Green

- based on inheritance vectors
- hidden Markov model
- best choice with many linked markers
- small/medium pedigrees only

Software

- R/pedprobr
- Part of the ped suite
- Elston-Stewart
- general likelihoods, inbreeding, genotype distributions ++
- Familias
- GUI for forensic applications
- Elston-Stewart
- handles mutations, HW deviations, ++
- MERLIN
- command line program
- Lander-Green
- medical applications: multipoint linkage

