Lecture 10

Case study:
 The missing grandchildren of Argentina

Magnus Dehli Vigeland

Statistical methods in genetic relatedness and pedigree analysis NORBIS course, $6^{\text {th }}-10^{\text {th }}$ of January 2020, Oslo

Project

- Evaluating the statistical power of DNA-based identification, exemplified by «The missing grandchildren of Argentina»

Daniel Kling, Thore Egeland, Mariana H. Piñero, Magnus D. Vigeland

Argentina 1976-1983

- Military dictatorship
- Dirty war against left-wing guerrillas
- Opponents killed or disappeared
- counts: 20,000-30,000

- 500 children abducted
- kidnapped with their parents, or born in captivity
- parents killed
- raised by police or military families.

1982: Falklands war against UK
1983: Democracy restored
1985: First trial against dictatorship leaders: life imprisonment sentence
1986: Final point law
1987: Due obedience law

Exceptions: Theft, rape and child abduction

The missing grandchildren

- Grandmothers of Plaza de Mayo
- formed in 1977
- weekly marches ever since
- 1984: First grandchild recovered
- HLA typing + blood groups
- 1989: National genetic data bank

	(B)NXD ${ }^{\text {a }}$
	BANCO NACIONAL DE DATOS GENÉTICOS

- 2020: 130 reunifications so far

- ~ 80 of these by BNDG

Press conference April 2017: Grandchild no. 122 recovered

Genetics of family reunification

- DNA-based evidence
- autosomal markers
- mtDNA
- Y chromosome

Forensic markers:

- standard kits, 15-24 STRs
- up to 50 alleles
- unlinked (mostly)
- Simplest when
- available DNA from the missing person
- available DNA from parents

Similar to standard paternity cases

- Argentina: Parents usually dead/missing

Genetics of family reunification

POI = person of interest
MP = missing person

$$
L R=\frac{P(\text { marker data } \mid M P=P O I)}{P(\text { marker data } \mid P O I \text { unrelated })}
$$

Positive match if LR > 10000

Genetics of family reunification

- Software: Familias
- Original publication: Egeland, Mostad et al, 2000
- Now maintained by Daniel Kling
- Used in all identifications by BNDG

Currently in BNDG

- 350 families
- 10000 POIs

Statistical power of reunification - part 1

Missing person

- Do we enough data to give a positive match if $\mathrm{POI}=\mathrm{MP}$?
- Inclusion power (or exceedance probability):

$$
I P_{10000}=P(L R>10000 \mid P O I=M P)
$$

- Can be computed by simulation!
- Unconditional \rightarrow average for all pedigrees of this type
- Conditional \rightarrow probability for this particular case

In forrel:
> missingPersonIP()

Conditional simulation

1. Compute conditional distribution in the father

A / A	A / B	B / B
0.5	0.5	0

2. Sample from this \downarrow

MUCH harder than unconditional

Conditional sims was first done in linkage analysis

- Power analysis for linkage requires simulation
- conditional on disease genotype
- conditional on the distance to disease locus
- Weeks, Ott, Lathrop (1990)
- SLINK: a general simulation program for linkage analysis

Not for the faint of heart...

Conditional simulation: Strategies

1. Brute force

- Sequential sampling
- One marker at a time
- One individual at a time

2. Founders + gene dropping

- Founders: Sample alleles from HW
- Rest: Mendelian coin tosses

3. Sample from the joint genotype distribution

- Efficient when few alleles

Usually fastest: Combining 2 and 3.

```
> markerSim(x, N=2, partial=m, avail=c(10,12:14))
Simulation strategy:
Pre-computed joint distribution: 1.
Brute force conditional simulation: 2.
Hardy-Weinberg sampling (founders): 9 and 11.
Simple gene dropping: 4, 10, 5, 12, 13 and 14.
Required likelihood computations: 9
```


Statistical power of reunification - part 2

Missing person

- Do we enough data to exclude an unrelated POI?
- Exclusion power

$$
P E=P(\text { data incompat. with ped } \mid P O I \text { unrelated })
$$

- Can be computed exactly. (Egeland, Pinto, Vigeland, 2014).

In forrel:
> exclusionPower()
> missingPersonEP()

The exclusion power formula

$$
\begin{aligned}
P E & =P(\text { data incompat with Claim } \mid \text { True }) \\
& =\sum_{\substack{\left(g_{2}, g_{3}\right) \\
\text { impossible } \\
\text { in claim }}} P\left(g_{2}, g_{3} \mid \text { True }\right)
\end{aligned}
$$

Back to Argentina ...

- Power evaluation of ~ 200 families in the BNDG database
- most of them unsolved

Typed	Families	Parent(s) typed	$2^{\text {nd }}$ degree only
1	11	5	5
2	20	5	15
3	29	7	20
4	41	6	33
5	29	7	14
6	26	5	14
7	14	0	8
8	14	0	9
9	5	0	3
$10+$	7	0	5
Total	$\mathbf{1 9 6}$	$\mathbf{3 5}$	$\mathbf{1 2 6}$

Missing	Total	mtDNA	Y
Male	27	27	25
Female	17	17	-
Unknown	152	142	108
Total	196	186	133

- For each family: Compute IP_{10000} and EP

Excellent power and PE

- 68 families with PE $>99 \%$ and $E_{10000}>99 \%$
- Includes all (except 1) of the 31 cases with parental data

$$
\begin{array}{r}
I P_{10000}=100 \% \\
E P=100 \%
\end{array}
$$

Results

Low power despite many typed

Missing person

Results

Good power, but exclusion impossible

E184

Overall

- 34% of the unsolved families had poor power

Typed

- 1-2
- 3-4
$\diamond 5-6$
\triangle 7-11
- Reasons:
- few markers
- few typed relatives

Ongoing actions:

- retyping 1000 individuals
- exhumation of 100 (!) informative relatives

Forensic Anthropology Unit at BNDG

Who should you choose?

- Coffee break!
- Next: Summary ...
- Monday 1

Pedigrees, genetics and probabilities

Ingredients for likelihood computations

- Monday 2

Introduction II: Pedigree analysis in R with the ped suite

The ped suite

https://github.com/magnusdv

- Tuesday 1

IBD and coefficients of relatedness and R

Relatedness yellow belt: Coefficient of kinship/inbreeding

Sewall Wright
(1889-1988)

- Wright (1921): The kinship coefficient φ between P and Q

$$
\begin{aligned}
\varphi_{P, Q} & =P(\text { random allele of } \mathrm{P} \text { IBD with random allele of } \mathrm{Q}) \\
& =P(\mathrm{R} \text { is autozygous }) \\
& =f_{R} \quad \text { the inbreeding coefficient of } \mathrm{R}
\end{aligned}
$$

P and Q related

$$
\stackrel{Y}{\varphi_{P, Q}>0}
$$

Examples

The relatedness triangle

$$
\begin{aligned}
& \text { For random autosomal locus } \\
& \kappa_{0}=P(0 \text { alleles IBD }) \\
& \kappa_{1}=P(1 \text { alleles IBD }) \\
& \kappa_{2}=P(2 \text { alleles IBD }) \\
& \qquad \kappa_{0}+\kappa_{1}+\kappa_{2}=1
\end{aligned}
$$

- Tuesday 2

Why some siblings are more equal than others

Distribution of realised IBD coefficients

- Wednesday 1

Recombination and genetic linkage

Napoleon Bonaparte (1769-1821)

$P($ any IBD sharing $) \approx 19 \%$

Jane Austen (1775-1817)

$P($ IBD sharing $) \approx 33 \%$

- Wednesday 2

Linkage analysis in medical genetics

Linkage analysis workflow

1. Collect (large) affected families
2. SNP genotyping

3. Parametric linkage analysis

4. Sequence genes in linkage peak \rightarrow identify causal mutation

- Thursday 1

Inference of pairwise relatedness and

Pedigree reconstruction

Family 22

> library(forrel)
$>k=$ IBDestimate (x)
$>$ showInTriangle(k)

Family 16

- Thursday 2 + Friday 1

Forensics genetics

res $=$ kinshipLR(list(H1, H2), ref $=2$)

$$
L R=\frac{P(\text { data } \mid H 1)}{P(\text { data } \mid H 2)}
$$

- Friday 2

Case study: Argentina

Who should you choose?

The end!

