

Workshop: Paternity and kinship testing including X-chromosomal markers

Thore Egeland and Daniel Kling

(1) Norwegian University of Life Sciences, (2) Department of Forensic Services, OUS, Norway

First lecture: Genetical and statistical background

Thore Egeland⁽¹⁾, Daniel Kling⁽²⁾

(1) Norwegian University of Life Sciences, (2) Department of Forensic Services, OUS, Norway

ISFG workshop, Sep 3-4 2018, Catanzaro (Calabria), Italy,
 http://familias.name/isfg-kinship-2018/

Basic forensic genetics
Weight of evidence. Likelihood Ratio (LR)
Combining information. Bayes theorem
Complications: theta-correction, mutation, silent–alleles

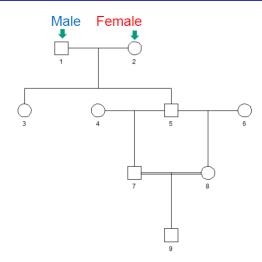
Program: Lectures and exercises

http://familias.name/isfg-kinship-2018/

Contents 09:15–10:00 and 10:15–11:30

- Basic forensic genetics very briefly:
 - Mendelian inheritance
 - Markers: autosomal, X, Y, mtDNA, STR-s.
- ▶ Weight of evidence. Likelihood Ratio (LR). Assumptions.
- Combining information. Bayes theorem
- Complications:
 - Mutation.
 - Theta correction.
 - Silent alleles.
- Introduction to Familias

Pedigree



Genetic markers I

- Small parts of the genome which ...
 - have known position
 - vary in the population
 - are easy to genotype
- SNPs (single nucleotide polymorphisms)
 - two alleles
 - usual requirement: MAF > 1%
 MAF= minor allele frequency
 - very common in the genome (millions!)
 - used in medical genetics +++
- STRs (short tandem repeats) = microsatellites
 - consecutive repeats of 2-5 bases
 - multiallelic: 5 50 alleles
 - allele names: # repeats
 - used in forensics

allele =
a manifestation
of a variable locus

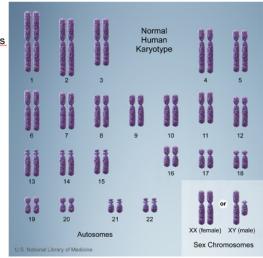
...CCGTTATATGGGC...
...CCGTTATATGGGC...
...CCGTTATATGGGC...
...CCGTTATATGGGC...
...ACG TTAG TTAG TTAG TTAG AAC...
...ACG TTAG TTAG TTAG TTAG TTAG AAC...

CCGTTATATGGGC

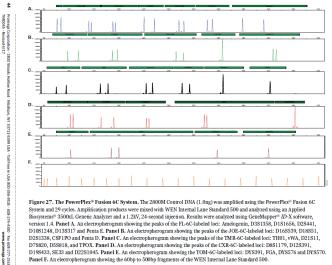
. . . CCGTTAGATGGGC . . .

Genetic markers II

- chrom 1 22:
 - called the autosomes
 - all have 2 alleles at each locus
 - autosomal markers
- · X chromosome
 - males have 1 allele
 - females have 2
 - X-linked markers
- · Y chromosome
 - males have 1 allele
 - females 0
 - Y-linked markers



. Genetic markers III. Example: Fusion 6C

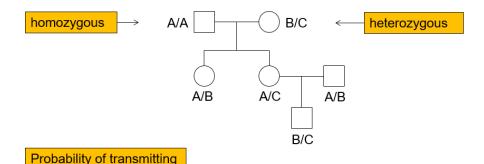


System and 29 cycles. Amplification products were mixed with WEN Internal Lane Standard 500 and analyzed using an Applied Biosystems® 3500xL Genetic Analyzer and a 1.2kV, 24-second injection. Results were analyzed using GeneMapper® ID-X software, version 1.4. Panel A. An electropherogram showing the peaks of the FL-6C-labeled loci: Amelogenin, D3S1358, D1S1656, D2S441, D10S1248, D13S317 and Penta E. Panel B. An electropherogram showing the peaks of the JOE-6C-labeled loci: D16S539, D18S51, D2S1338, CSF1PO and Penta D. Panel C. An electropherogram showing the peaks of the TMR-6C-labeled loci; TH01, vWA, D21S11. D7S820, D5S818, and TPOX, Panel D. An electropherogram showing the peaks of the CXR-6C-labeled loci; D8S1179, D12S391, D19S433, SE33 and D2S1045, Panel E. An electropherogram showing the TOM-6C-labeled loci: DYS391, FGA, DYS576 and DYS570. Panel F. An electropherogram showing the 60bp to 500bp fragments of the WEN Internal Lane Standard 500.

Mendelian inheritance

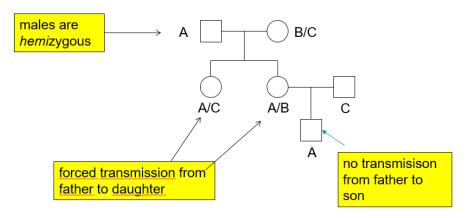
either allele: always 50%

Example: autosomal marker with 3 alleles: A, B, C



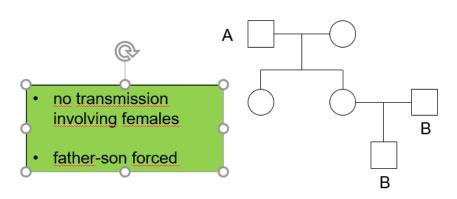
X linked inheritance

Example: X-linked marker with 3 alleles: A, B, C

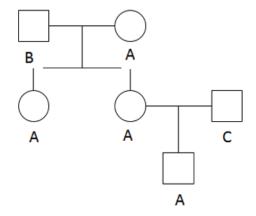


Y linked inheritance

Example: Y-linked marker with 2 alleles: A, B

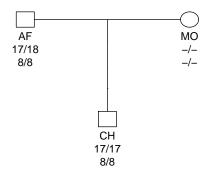


Mitochondrial (mtDNA) inheritance



Passed on from mother to all children

Hypotheses



- \blacktriangleright H_1 : AF biological father of CH.
- ▶ *H*₂: AF and CH unrelated.
- Notation. Sometimes:
- ► H₁ = H_P: "prosecution hypothesis",
- $H_2 = H_D$: "defence hypothesis".

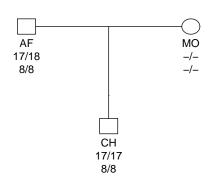
Likelihood ratio. Definition

Forensic framework

$$LR = LR_{H_1,H_2}(E) = \frac{P(E \mid H_1)}{P(E \mid H_2)}$$

is the likelihood ratio for evidence E with respect to the two hypotheses H_1 and H_2 . The LR measures how much better H_1 explains the evidence E than H_2 .

Likelihood Ratio. Example



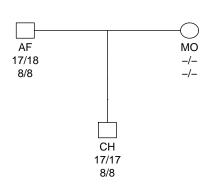
$$LR = \frac{P(E \mid H_1)}{P(E \mid H_2)} = \cdots = \frac{P(g_{CH} \mid g_{AF})}{P(g_{CH})}$$

$$LR_1 = \frac{\frac{1}{2}p_{17}}{p_{17}^2} = \frac{1}{2 \times 0.204} = 2.45$$

$$LR_2 = \frac{p_8}{p_8^2} = \frac{1}{0.554} = 1.81$$

$$LR = LR_1 \times LR_2 = 2.45 \times 1.81 = 4.4.$$

Likelihood Ratio. Interpretation and assumptions



- ► Interpretation LR=4.4: The data is 4.4 times more likely if AF is assumed to be the father compared to the unrelated alternative.
- Assumptions
 - Hardy-Weinberg Equilibrium (HWE).
 - Independent markers.
 - No artefacts: (no mutation, no silent alleles, no drop-out/in, no error).

Realistic number of markers

Marker	СН	AF	LR	LR(mut)
D3S1358	17/17	17/18	2.45	2.45
TPOX	8/8	8/8	1.81	1.80
D6S474	16/17	14/15	0.000	0.001
D19S433	12/15	12/14	3.34	3.34
Total			0	25070642

W = Posterior probability of paternity

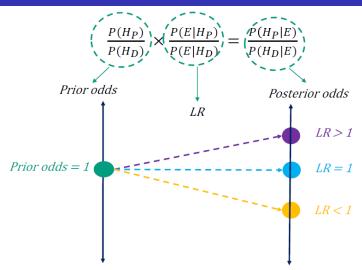
- Assume prior probabilities $P(H_P) = P(H_D) = 0.5$ (reasonable?)
- Prior odds $\frac{P(H_P)}{P(H_D)} = 1$.

Then

$$W = P(H_P \mid E) = \frac{LR}{LR + 1} = \frac{25070642}{25070642 + 1}$$

= 0.99999996 = "Probability of H_P given evidence"

Bayes theorem on odds form



Blackstone ratio

Blackstone's ratio:

$$(1+c_2)/(1+c_1) = 10$$
 (in practice much higher.)

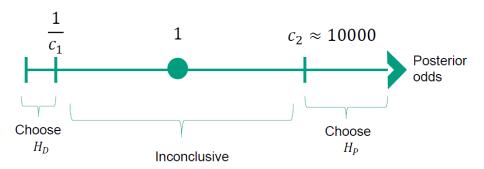
		IRUIH		
		Guilt <i>H</i> _P	Innocence H_D	
ERDICT	Guilt H_P	0	$1 + c_2$	
LINDICT	Innocence H_D	$1 + c_1$	0	

BETTER THAT TEN GUILTY PERSONS ESCAPE THAN THAT ONE INNOCENT SUFFER

- SIR WILLIAM BLACKSTONE (1765)

Make no decision: cost = 1

Optimal decision rule



If c_1 and c_2 are specified, an optimal decision rule can be determined.

See Tillmar and Mostad (2014) for an application

Adding evidence I

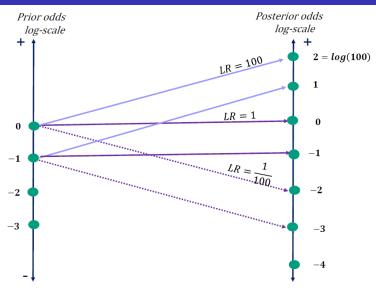
- If prior odds = 0 or LR = 0
 - posterior odds = 0
- Assume prior odds > 0 and LR > 0. Then

$$log(prior odds) + log(LR) = log(posterior odds)$$

log(LR) = log₁₀(LR) (unit called "ban" - Alan Turing)

^{*}Good IJ (1985)

Adding evidence II



Theta correction. Dispute laid to rest

Hardy Weinberg

Two alleles A, B.

$$p_A = 0.4, p_B = 0.6.$$

Fraction A/A:
$$0.4^2 = 0.160$$

Fraction A/B:
$$2*0.4*0.6 = 0.480$$

Fraction B/B:
$$0.6^2 = 0.360$$

Sum
$$= 1.000$$

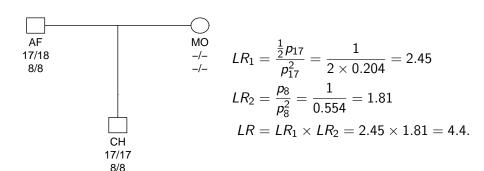
Problem: Above requires HW, not valid if 'unrelated people' are slightly related Solution: theta-correction

Theta - correction

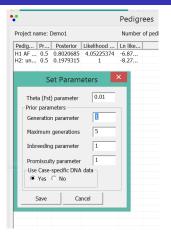
Homozygous A, A:
$$\theta p_A + p_A^2(1-\theta)$$
,
Heterozygous A, B: $2p_A p_B(1-\theta)$.
 $\theta = 0.1$ (extreme case)
Fraction A/A: $0.1*0.4+0.4^2*(1-0.1) = 0.184 > 0.160$
Fraction A/B: $2*0.4*0.6*(1-0.1) = 0.432 < 0.480$
Fraction B/B: $0.1*0.6+0.6^2*(1-0.1) = 0.384 > 0.360$
Sum 1.000 1.000

 \blacktriangleright Fraction homozygotes increases with θ

Previous example

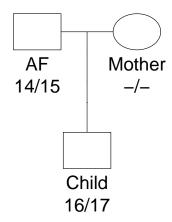


Fst=Theta=0.01. Input: Pedigrees > Parameters



- ► $LR = 2.298 \cdot 1.764 = 4.1$ when $\theta = 0.01$
- ► $LR = 2.45 \cdot 1.81 = 4.4$ when $\theta = 0.00$.

Mutation: Exercise 2.2, 2.7



Mutation: Results, simillar to Exercise 2.9

System	Child	AF	LR	LR(mut)
D3S1358	17/17	17/18	2.450	2.449
TPOX	8/8	8/8	1.805	1.804
D6S474	16/17	14/15	0.000	0.001
3 markers			0.000	0.0044
22 (1 mut)			0.000	25070642

Table 1: Genotype data for a Child and alleged father (AF) along with LR-s. The rightmost column is based on a stepwise unstationary mutation model (expained below) with mutation rate 0.001 and range 0.5 for all markers.

Equal model

Mutation to							
Al	13	14	15	16	17	18	
13	0.999	0.0002	0.0002	0.0002	0.0002	0.0002	
14	0.0002	0.999	0.0002	0.0002	0.0002	0.0002	
15	0.0002	0.0002	0.999	0.0002	0.0002	0.0002	
16	0.0002	0.0002	0.0002	0.999	0.0002	0.0002	
17	0.0002	0.0002	0.0002	0.0002	0.999	0.0002	
18	0.0002	0.0002	0.0002	0.0002	0.0002	0.999	

- P(no mutation) = 0.999
- ▶ Problem: $P(14 \rightarrow 17) = P(15 \rightarrow 16) = 0.0002$.

Mutation: Biology

- Mutation rate varies with
 - Sex of parent and locus.
 Alleles tend to mutate to close alleles:

- Several models
- Mutation rates: http://www.cstl.nist.gov/strbase/mutation.htm

Mutation: Input

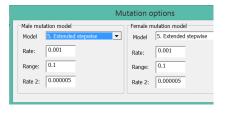


Mutation Matrix. Range

Mutation to						
Al	13	14	15	16	17	18
13	0.999	0.000	0.000258	0.00012903	6.4516e-005	3.2258e-
14Rec	0.0003	0.999	0.000347	0.00017391	8.6957e-005	4.3478e-
15	0.0001	0.000	0.999	0.00030769	0.00015385	7.6923e-
16	7.6923	0.000	0.000307	0.999	0.00030769	0.000153
17	4.3478	8.695	0.000173	0.00034783	0.999	0.000347
18	3.2258	6.451	0.000129	0.00025806	0.00051613	0.999

$$\mathsf{Range} = \frac{15 \to 17}{15 \to 16} = \frac{0.00015385}{0.00030769} = 0.5$$

Extended stepwise model: Generally recommended, consistent for microvariants



- ► Rate Integer mutations: 9→ 10, 9.3→ 10.3
- Range: As before. 1 step 1/0.1 = 10 times more likely than two steps, etc.
- ► Rate2 Fractional Mutations: 9.3→ 10, 9→ 9.3

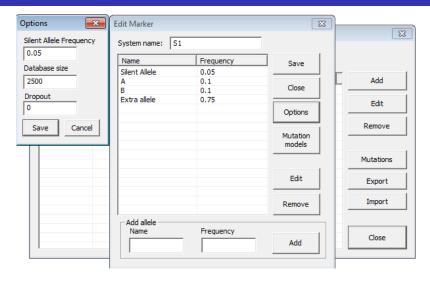
Extended stepwise model: Example

Mutation to						
Α	9	9.3	10	10.3	11	
9	0.998995	2.5e-006	0.0009090909091	2.5e-006	9.090909091e-005	
9.3	1.666666667e-006	0.998995	1.6666666667e-006	0.001	1.666666667e-006	
10	0.0005	2.5e-006	0.998995	2.5e-006	0.0005	
10.3	1.666666667e-006	0.001	1.666666667e-006	0.998995	1.666666667e-006	
11	9.090909091e-005	2.5e-006	0.0009090909091	2.5e-006	0.998995	

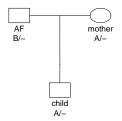
- Recall: Rate = 0.001, Range = 0.1, Rate2 = 0.000005.
- Note: P("no mut") = 1 (0.001 + 0.000005) = 0.998995.

$$P(9 \rightarrow 10) = 0.0009 >$$
 $P(9 \rightarrow 9.3) = 2.5e - 006 = 0.0000025$
 $\frac{P(9 \rightarrow 11)}{P(9 \rightarrow 10)} = \frac{0.00009}{0.0009} = 0.1$

Silent alleles. Input: General DNA data $> \ldots >$ Options



Exercise 2.11



- Enter genotypes as homozygous.
- ▶ $p_B = 0.1$, $p_S = P(\text{"Silent allele"}) = 0.05$. Now e.g.
- $P(B/-) = p_B^2 + 2 \cdot p_B p_S = 0.02.$
- ► Statistics for silent alleles: http://www.cstl.nist.gov/strbase/NullAlleles.htm

T Egeland, D Kling, and P Mostad.

Relationship Inference with Familias and R: Statistical Methods in Forensic Genetics.

Academic Press, 2015.

IJ Good.

Weight of evidence: A brief survey.

Bayesian Statistics, 1985.

A Tillmar and P Mostad.

Choosing supplementary markers in forensic casework.

Forensic Science International: Genetics, 13:128–133, 2014.