X-linked markers: Repetition, haplotype frequencies, FamLinkX introduction

Thore Egeland\(^{(1) , (2)}\)

\(^{(1)}\) Norwegian University of Life Sciences, \(^{(2)}\) NIPH

http://familias.name/ghep2016
thore.egeland@gmail.com
Repetition

- Inheritance
- Linkage. Recombination.
- LR
 - GHEP-ISFG Decaplex [3], ARGUS X-12 [4],....

Estimating haplotype frequencies: λ model.

FamLinkX [5]. Demo . Exercises
FamLinkX, developed by Daniel Kling. The participants should bring a laptop with FamLinkX, preferably version 2.5 (available from Aug 22 2016) downloaded (http://famlink.se/fx_download.html).

- Assistance for installation will be provided at the workshop, if needed. Note that installation is typically only possible if you are administrator on your laptop.

Time schedule

- 15.45 – 16.15 Coffee break
- 16.15 – 18.00 Exercises: The FamLinkX exercises 4.12-4.14, 4.16-4.18 are from the book "Relationship Inference with Familias and R" by Egeland, Kling, and Mostad available from Elsevier. The required material is freely available: exercises, solutions, zipped input files. Thore Egeland
Paternal grand daughter should share one X-allele IBD [6] with grand mother.

- One allele shared IBD with prob. 0.5 for *autosomal* marker.
- One X-allele shared IBD with prob. 0.5 for *maternal* grand daughter.
X-chromosomal inheritance. Half sisters

- **Paternal** half sisters should share one X-allele IBD.
- One allele shared IBD with prob. 0.5 for *autosomal* marker.
- One X-allele shared IBD with prob. 0.5 for **maternal** half sisters.
Paternal or maternal half sisters?

\[LR_1 = \frac{p_1 p_2^2}{\frac{1}{2} 2p_1 p_2^3 + \frac{1}{2} p_1 p_2^2} = \frac{1}{p_2 + \frac{1}{2}} > 1 \text{ if } p_2 < \frac{1}{2}. \]

\[LR_1 \overset{p_2=0.2}{=} 1.42857 \]
FamLinkX: http://familias.name/ExamplePaternalOrMaternal.sav
Two markers: Multiply?: \(LR = ? \ LR_1 \times LR_2 \)

\[LR_2 = \frac{p_{11}p_{12}p_{13}}{\frac{1}{2}2p_{11}p_{12}2p_{13} + \frac{1}{2}p_{11}p_{12}p_{13}} = \frac{1}{2p_{12} + \frac{1}{2}} > 1 \text{ if } p_2 < \frac{1}{4}. \]
Assumptions

- We can only multiply LR-s when markers are independent, i.e., $LR \neq LR_1 \times LR_2$.
- Most markers on the X–chromosome are dependent.
- Calculations need to account for dependence and software is needed.
- Dependence arises because of linkage and linkage disequilibrium (LD), Linkage Equilibrium (LE) (no gametic association), briefly reviewed next.
Linkage. Haplotypes. Recombination

Haplotypes known:
- Bb and Aa

Haplotypes unknown

Recombination: depends on recombination probability r
Maternal grandson or unrelated? Mother missing.

\[
LR = \frac{1}{2} \frac{(1 - r)}{p_{12,17}} \quad LE = \frac{1}{2} \frac{(1 - r)}{p_{12}p_{17}} \\
\quad \quad \quad \quad \quad \quad r = 0.01 \quad \frac{1}{2} \frac{(1 - 0.01)}{0.6 \times 0.4} = 2.0625
\]

\[
LR \quad r = 0.5 \quad \frac{1}{2p_{12}} \frac{1}{2p_{17}} = 1.04
\]
Haldane’s map function:

\[
r = \frac{1 - \exp\left(-2 \times \frac{x}{100}\right)}{2}
\]

at 50 cM:

\[
x = 50 cM \quad 1 - \exp\left(-2 \times \frac{50}{100}\right) = 0.316
\]
LE: multiply

<table>
<thead>
<tr>
<th>loc1</th>
<th>loc2</th>
<th>freq1</th>
<th>freq2</th>
<th>(P(hap \mid LE))</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>0.2</td>
<td>0.3</td>
<td>0.2*0.3=0.06</td>
</tr>
<tr>
<td>A</td>
<td>b</td>
<td>0.2</td>
<td>0.7</td>
<td>0.2*0.7=0.14</td>
</tr>
<tr>
<td>a</td>
<td>B</td>
<td>0.8</td>
<td>0.3</td>
<td>0.8*0.3=0.24</td>
</tr>
<tr>
<td>a</td>
<td>b</td>
<td>0.8</td>
<td>0.7</td>
<td>0.8*0.7=0.56</td>
</tr>
</tbody>
</table>

| tot | | | | 1.00 |

Table 1: LE based haplotype frequency estimates
Haplotype frequencies II. Data: count

| loc1 | loc2 | freq1 | freq2 | \(P(hap \mid LE) \) | Count | \(P(hap \mid Count) \) |
|------|------|-------|-------|----------------|-------|----------------|----------------|
| A | B | 0.2 | 0.3 | 0.2*0.3=0.06 | 10 | 10/100=0.10 |
| A | b | 0.2 | 0.7 | 0.2*0.7=0.14 | 15 | 15/100=0.15 |
| a | B | 0.8 | 0.3 | 0.8*0.3=0.24 | 25 | 25/100=0.25 |
| a | b | 0.8 | 0.7 | 0.8*0.7=0.56 | 50 | 50/100=0.50 |
| tot | | 1.00 | | 100 | 1.00 | |

Table 2: LE and count based haplotype frequency estimates
Problems with both methods (LE and count method)

- LE often far from valid.
- We typically don’t observe all haplotypes:
 - Two markers, 10 alleles each: $10 \times 10 = 100$ haplotypes.
 - Three markers, 10 alleles each:
 $10 \times 10 \times 10 = 1000$ haplotypes.

Need to estimate frequency greater than 0 in a non ad-hoc way.
How big databases are needed?

- Typically, larger number of haplotypes are needed compared with allele databases.
- **Power calculations** can be done in each case.
- Basic idea simplified: Assume true haplotype frequency is 0.1; specify accepted length of CI (confidence interval):
 - 95% CI from 0.09 to 0.11: Large sample needed.
 - 95% CI from 0.01 to 0.19: Small sample needed.
Estimating haplotype frequencies

\[F_i = \frac{c_i + \lambda p_i}{C + \lambda}. \]

- \(F_i \): Updated haplotype frequency,
- \(c_i \): Count of haplotype \(i \),
- \(C \): Total number of haplotypes,
- \(p_i \): Expected haplotype frequency,
- \(\lambda > 0 \): prior weight.
Repetition: Inheritance, linkage and LD

Haplotype frequencies

FamLinkX

Example I

\[F_i = \frac{c_i + \lambda p_i}{C + \lambda} \]

<table>
<thead>
<tr>
<th>haplo</th>
<th>(P(hap \mid LE))</th>
<th>Count</th>
<th>(\lambda = 100) method</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>(p_1 = 0.06)</td>
<td>(c_1 = 10)</td>
<td>(\frac{10+100 \times 0.06}{100+100} = 0.080)</td>
</tr>
<tr>
<td>Ab</td>
<td>(p_2 = 0.14)</td>
<td>(c_2 = 15)</td>
<td>(\frac{15+100 \times 0.14}{100+100} = 0.145)</td>
</tr>
<tr>
<td>aB</td>
<td>(p_3 = 0.24)</td>
<td>(c_3 = 25)</td>
<td>(\frac{25+100 \times 0.24}{100+100} = 0.245)</td>
</tr>
<tr>
<td>ab</td>
<td>(p_4 = 0.56)</td>
<td>(c_4 = 50)</td>
<td>(\frac{50+100 \times 0.56}{100+100} = 0.530)</td>
</tr>
<tr>
<td>tot</td>
<td></td>
<td>1.00</td>
<td>1.000</td>
</tr>
</tbody>
</table>

\(\text{tot} \) = 1.00, \(C = 100 \)
Example I contd: LR

\[F_i = \frac{c_i + \lambda p_i}{C + \lambda}, \]

\[LR = \frac{1}{\text{freq haplotype } AB} = \frac{C + \lambda}{c_i + \lambda p_i} = \frac{100 + \lambda}{10 + \lambda \times 0.06}. \]
Example I contd: \(LR = \frac{100 + \lambda}{10 + \lambda * 0.06} \)
Example II

<table>
<thead>
<tr>
<th>haplo</th>
<th>$P(hap \mid LE)$</th>
<th>Count</th>
<th>$\lambda = 0$</th>
<th>$\lambda = 100$</th>
<th>$\lambda = 10000$</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$p_1 = 0.06$</td>
<td>$c_1 = 10$</td>
<td>0.10</td>
<td>0.080</td>
<td>0.0604</td>
</tr>
<tr>
<td>Ab</td>
<td>$p_2 = 0.14$</td>
<td>$c_2 = 15$</td>
<td>0.15</td>
<td>0.145</td>
<td>0.1401</td>
</tr>
<tr>
<td>aB</td>
<td>$p_3 = 0.24$</td>
<td>$c_3 = 25$</td>
<td>0.25</td>
<td>0.245</td>
<td>0.2401</td>
</tr>
<tr>
<td>ab</td>
<td>$p_4 = 0.56$</td>
<td>$c_4 = 50$</td>
<td>0.50</td>
<td>0.530</td>
<td>0.5594</td>
</tr>
<tr>
<td>tot</td>
<td></td>
<td>$C = 100$</td>
<td>1.000</td>
<td>1.000</td>
<td>1.0000</td>
</tr>
</tbody>
</table>

Table 3: λ effect illustrated

- If $\lambda = 0$: count estimate,
- If $\lambda = \infty$: LE estimate,
- otherwise weighted average.
Example III

Example. Data Exercise 4.12

\[
\frac{59 + 0.00000001 \times 0.6 \times 0.6}{100 + 0.00000001} = 0.59
\]

\[
\frac{59 + 100000 \times 0.6 \times 0.6}{100 + 100000} = 0.36
\]
\(\lambda\): Practical suggestion.

- \(\lambda\) estimates: Egeland, Kling, Mostad [1].
- FamLinkX 2.5 implementation: Generates R code. See video Exercise 4.14: http://familias.name/VideosBook.pdf
- Practical solution:
 calculate LRs with a selection of different values, say

\[
\lambda = 0.01, 1, 100, 10000
\]

and report the least extreme LR.
FamLinkX. Demo: Exercise 4.12. Video:
http://familias.name/VideosBook.pdf

\[H_{12,17} = \text{estimated haplotype frequency} \]

\[LR_{\text{COUNT}} = \frac{1}{H_{12,17}} = \frac{1}{1/100} = 100, \quad LR_{\text{LE}} = \frac{1}{p_{12}p_{17}} = \frac{1}{0.6 \times 0.4} = 4.17. \]
FamLinkX. Screenshots Exercise 4.12.
Screenshots Exercise 4.12. Frequency database

![Screenshot of FamLinkX](attachment:image.png)
Editing clusters/markers I

![Edit clusters/markers window](Image)

- Database name: Unspecified
- Cluster options: Add, Edit, Remove, Import, Export
- Lambda arrow pointing to the cluster area

Outline
Repetition: Inheritance, linkage and LD
Haplotype frequencies
FamLinkX
Editing clusters/markers II
Editing clusters/markers III

Exer 4.21*
Editing clusters/markers IV
Tools II

Select basic hypothesis (Only one pedigree)

- Duo (Maternity)
- Duo (Paternity)
- Trio
- Unrelated (Duo)
- Full Siblings
- Half Siblings (Maternal)
- Half Siblings (Paternal)
- Unrelated
- Full Siblings (Data mother)
- Half Siblings (Data mothers)
- Grandmother
- Grandmother (Data mother)
- Aunt/Uncle
- Aunt/Uncle (Data mother)
- Aunt/Uncle (Maternal)
- Two Aunts/Undes
- Two Aunts/Undes (Data mother)
- Three Full Siblings
Select alternative hypotheses

- Full Siblings
- Half Siblings (Maternal)
- Half Siblings (Paternal)
- Unrelated
- Grandmother
- Aunt/Uncle

Create/Edit pedigree
Display full image
Results

Duo (Paternity)
LR (Exact): 99.9977
LR (Cluster): 99.998
LR (LE): 4.16667

Unrelated Scale
Three computational models in FamLinkX

M1 Exact Linkage, LD (within clusters) and mutations accommodated. Preferred model, but not implemented for *user defined* pedigrees.

M2 Cluster Not recombinations in clusters, LD (within clusters), not mutations.

M3 Only linkage.
Thore Egeland, Daniel Kling, and Petter Mostad.

Thore Egeland and Antonio Salas.
Estimating haplotype frequency and coverage of databases.

Leonor Gusmão, Paula Sánchez-Diz, Cíntia Alves, Iva Gomes, María Teresa Zarrabeitia, Mariel Abovich, Ivannia Atmetlla, Cecilia Bobillo, Luisa Bravo, Juan Builes, et al.
A GEP-ISFG collaborative study on the optimization of an X-STR decaplex: data on 15 Iberian and Latin American populations.

Daniel Kling, Barbara Dell'Amico, and Andreas O Tillmar.
FamLinkX–Implementation of a general model for likelihood computations for X-chromosomal marker data.

Daniel Kling, Andreas Tillmar, Thore Egeland, and Petter Mostad.
A general model for likelihood computations of genetic marker data accounting for linkage, linkage disequilibrium, and mutations.

Nádia Pinto, Leonor Gusmão, and António Amorim.
X-chromosome markers in kinship testing: a generalisation of the IBD approach identifying situations where their contribution is crucial.

FamLinkX, developed by Daniel Kling. The participants should bring a laptop with FamLinkX, preferably version 2.5 (available from Aug 22 2016) downloaded (http://famlink.se/fx_download.html).

- Assistance for installation will be provided at the workshop, if needed. Note that installation is typically only possible if you are administrator on your laptop.

Time schedule

- 13.30 – 15.45 **X-linked markers**: Repetition, haplotype frequencies. FamLinkX demo video. More videos (Chapter 4). Thore Egeland
- 15.45 – 16.15 Coffee break
- 16.15 – 18.00 Exercises: The FamLinkX exercises 4.12-4.14, 4.16-4.18 are from the book "Relationship Inference with Familias and R" by Egeland, Kling, and Mostad available from Elsevier. The required material is freely available: exercises, solutions, zipped input files. Thore Egeland