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Chapter 2

Solutions: “Basics”

For some exercises, video solutions are also available as indicated by “Video
available” in the heading of the solution. Links to these videos are available
from http://familias.name/VideosBook.pdf.

Solution Exercise 2.1 ( Video available).

a) We can write

LR =
Pr(child | mother,father)

Pr(child | mother)

Consider first the numerator. The only possible genotype for the child,
given the mother and AF, is A/B, and therefore the probability is 1.
For the denominator, the father must have passed on the A allele, and
therefore the probability is pA. Hence LR = 1/pA = 20 . The standard
interpretation is “The data is 20 times more likely assuming AF to be
the father compared to the alternative that some unknown man is the
father”.

b,c) See video.

d) (1/pA) ∗ (1/pa) = (1/0.05) ∗ (1/0.1) = 200

e,f) See video.

g) RMP = p2Ap
2
a = 1/40000 and so 1/RMP = 40000.

h) LR = (1 + 3 · 0.02)/(2 · 0.02 + (1− 0.02) · 0.05) = 11.91
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i) Note that Hardy-Weinberg equilibrium is required for the LR derivation
for each marker. This assumption is not needed when we use theta-
correction. Furthermore, linkage equilibrium is needed. We have also
assumed that there are no mutations or silent alleles. We assume AF and
the mother to be unrelated.

Solution Exercise 2.2.

a) The numerator Pr(data | H1) = 0, and therefore also LR = 0.

b) LR = 4.07e − 03 = 0.00407. This answer answer assumes that all alleles
are entered; the answer difficult differs for all mutation models if only the
alleles required are entered, in this case 14, 15, 16, 17 and a rest allele.

c) Note that m = R/(n− 1) = 0.007/7 = 0.001. We find

LR = 0.001 · (0.212 + 0.292)/(2 · 0.212 · 0.292) = 0.00407.

R is the expected mutation rate, m the probability for a specific mutation,
for this model equal for all mutations.

Solution Exercise 2.3.

The pedigree corresponding toH1 is specified as shown in Figure 2.1. Answers
are obtained by loading the Familias file for this exercise. A table is obtained
pressing View Result in the pedigree window, see Figure 2.2. The marker
D7S820 gives a very large LR, namely 11189 since the allele 11.1 is so rare.
If this marker is omitted the new LR is 530440484.5/11189.45872=47405.

Solution Exercise 2.4.

a) LR(grandfather/unrelated) = 0.98 for D3S1358.

b) LR(grandfather/unrelated) = 0.0085 for all markers.

c) Whether autosomal and haplotype markers can be combined and in case
how is a big question and there appears to be no consensus.

Solution Exercise 2.5.

a) W = 20/(1 + 20) = 0.952.

b) W = 200/(1 + 200) = 0.995
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Figure 2.1: Defining the pedigree.

c) Same answers as above. Output for specific combinations of markers are
conveniently found using Included systems.

d) This is a big question. Most recommendations favor LR. The problem
with W is to decide on the prior. W may, however, be easier to interpret.

Solution Exercise 2.6.

a) We find LR = 10 and, using Scale, LR(H1/H2) = 10, LR(H1/H3) =
1.905.

b) The posteriors for H1, H2, H3 are respectively 0.615, 0.0615, 0.323.

Solution Exercise 2.7.

Most answers are given in the exercise and only a few additional comments
are added. If a model is unstationary, allele frequencies change with genera-
tions. This adds some intuition as to why introducing an extra person, say
a grandparent, typically changes results slightly for an unstationary model.

Consider the Stepwise (unstationary) model which gives LR = 6.4e−
03 = 0.0064. Remove alleles so that only 14, 15, 16, 17 and a Rest allele

remains. Then LR changes. This effect does not have to do with Familias;
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Figure 2.2: Output, Familias Exercise 2.3

rather the reason is that there are two different models, one with 8 alleles
and one with fewer alleles (which constrains mutations within those alleles)
and different models typically give different results. See Section 7.4 for a
more complete discussion of mutation models.

Solution Exercise 2.8.

a) Assuming H1, the child has inherited the allele 16 (17) from the mother
with probability 1/2 and then one of the father’s allele must have mutated
to 17 (16). Therefore

Pr(CH | AF ) =
1

2
p16(m14,17 +m15,17) +

1

2
p17(m14,16 +m15,16)

and the required result follows.

b) This follows by setting m14,17 = m15,17 = m14,16 = m15,16 = m. Then

LR =
0.000714 · (0.212 + 0.292)

2 · 0.212 · 0.292
= 0.002907728.
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c) We find

LR =
p16 · 2 · kp17 + p17 · 2 · kp16

4p16p17
= k

by using the definition mij = kpj. Furthermore,

R =
n∑

i=1

pi
∑
j 6=i

kpj =
n∑

i=1

pik(1−pi) ⇒ k =
R∑n

i=1 pi(1− pi)
= 0.00625953.

Solution Exercise 2.9. Regarding b): The marker with 0 LR, Penta E
is most easily found using View result. Regarding c), LR = 4421152,
d) LR(H1/H3) = 1.39 (answers differ if mutations are only modelled for
Penta E). There is also solution file, Solutions_2_9.fam available. Regard-
ing the last question, there is no consensus. One can argue that a model
should be formulated before calculations and then appropriate mutation
models should be specified for all markers. On the other hand, introduc-
ing mutations complicates calculations and this is a problem if it is desired
to verify by hand. This is discussed at greater length in the Section 2.4.4
“Dealing with mutations in practice”.

Solution Exercise 2.10.

a) LR = 3.78.

b) We could do simulations in Familias, see Exercise 2.17, and check if LR
exceeds a specified threshold with an acceptable high probability. There
are several ways to do the simulations, the most straightforward would be
to load the database with the standard number of markers and simulate
for these. X-chromosomal markers could also help and FamLinkX could
then be used.

Solution Exercise 2.11.

The LR (father/not-father) is 1.363636. How to do it: Enter the allele system
setting the silent allele frequency to 0.05. Enter the persons and their DNA
data as usual. Construct the pedigrees manually and calculate.

Solution Exercise 2.12.

See Section 2.5.1 for an example based on the sampling formula for a similar
case.
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Solution Exercise 2.13.

LR = 0.0068.

Solution Exercise 2.14.

See video. The video is made for Familias 2, but the procedure is the same
for Familias 3.

Solution Exercise 2.15.

a) LR (father/not father)=0 from Familias. The LR for marker PENTA E
is 0.

b) General DNA data: Click on the marker PENTA E. In the new window
click on options and set Dropout to 0.1. Save.
Case-related DNA data: choose the child and tick Consider dropout

in the new window. A message will appear saying that Familias will
model dropout, click OK. Calculate and find LR = 2679875170.

c) Case-related DNA data: Untick consider dropout for the child.
General DNA data: Choose mutation model for PENTA E, see previous
exercises on how to do this. Calculate LR = 1078633.

d) It’s certainly not standard to use dropout routinely.

Solution Exercise 2.16.

Note that genotypes must be given as homozygotes in Familias.

a) General DNA data: when editing the allele data, choose Options and
include a silent allele frequency of 0.05. Note that allele frequencies and
the silent allele frequency should add to 1. Therefore, some change in
allele frequencies may be required, for instance changing the rest allele
frequency to 0.55. We find LR = 0.57.

b) General DNA data: Remove the silent allele frequency and include a
dropout probability of 0.05. Case-related DNA data: Tick Consider dropout

for both the alleged father and child. This gives LR=0.34.

Solution Exercise 2.17.
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Simulation: In Pedigrees click Simulate. Move both AF and Child to
Will be genotyped. The simulation will produce slightly different results
each time it is run unless a seed is set. If you untick random seed and set
seed to 12345, you should get the same results as below. Click Simulate.
The mean LR is shown for both H1 true and H2 true.

a) The mean LR when H1 is true is 40.86.

b) The mean LR when H2 is true is 0.8979.

c) Click LR limit, choose LR threshold 50 and click update. The probability
of observing a LR larger than 50 is 0.09.

Solution Exercise 2.18.

a) CSF1PO: The mother has transmitted allele 10, so the father must trans-
mit allele 15. This happens with probability 1/2 under H1 and with
probability p15 under H2. Thus, LR is 1/(2p15).

D7S820: Under H1, the child’s genotype has probability 1/2; under H2 it
has probability 1

2
(p11 + p12)), so LR1,2 = 1/(p11 + p12).

D19S433: Under H1 the child’s genotype has probability 1; under H2 it
has probability p14, so LR1,2 = 1/p14.

b) CSF1PO: Now, the brother of the defendant must transmit allele 15. The
allele he transmits is equal to allele 15 with probability 1/4, to allele 14
with probability 1/4, and is randomly drawn from the population with
probability 1/2. Thus, he transmits allele 15 with probability 1/4+p15/2.
Therefore

LR3,2 =
Pr(child | H3)

Pr(child | H2)
=

1
2
(1
4

+ 1
2
p15)

1
2
p15

=
1 + 2p15

4p15
.

The answer can be checked using the file Solutions2_18.fam.

D7S820: The brother must transmit 11 or 12. This is done with probabil-
ity 1/2+(p11+p12)/2. The mother’s allele is the other one with probability
1/2, so probability of child’s genotype under H3 is 1/4 + (p11 + p12)/4.
Under H2 we had probability 1

2
(p11 + p12) so

LR3,2 =
1 + p11 + p12
2(p11 + p12)

.
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D19S433: The brother transmits allele 14 to the child with probability
1
2
(1 + p14) so LR3,2 = (1 + p14)/(2p14).

c) Yes: CSF1PO: Since 1/(2p15) = 4.56 we know p15 and this yields LR3,2 =
2.78.

D7S820: Since 1/(p11 + p12) = 2.92, we know p11 + p12 and this yields
LR3,2 = 1.96.

D19S433: Since 1/p14 = 2.93, we know p14 and this yields LR3,2 = 1.97.

It may seem surprising that this is possible, but in the LR1,2 only the
matching allele(s) play a role. If there are two matching alleles such as
11 and 12 for D7S820, they may be viewed as a “11 or 12” allele.

d) Dividing yields 2/(1 + 2p15) for CSF1PO, 2/(1 + p11 + p12) for D7S820
and 2/(1 + p14) for D19S433.

e) The limit p15 → 1 yields LR1,3 = 2/3 (support for the brother being the
father), limit p15 → 0 yields LR1,3 = 1. If allele 15 is very common, we
would expect the brother to have more alleles 15 than the defendant and
so have better chances to pass an allele 15 to an offspring. If, 15 is very
rare, the evidence is neutral.

f) Now LR1,3 is always greater than or equal to one, with equality if p14 = 1,
in which case the brother must have two alleles 14 as well and we cannot
distinguish them anymore.

g) Same kind of analysis. If p11 + p12 is close to 1, LR1,3 ≈ 1. If p11 + p12 is
close to 0, LR1,3 ≈ 2 and there is evidence against the defendant.

h) No, since we do not have prior probabilities nor do we know if even more
scenarios are possible (e.g., father of defendant is father of child?).
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Solutions: “Searching for
relationships”

Solution Exercise 3.1 (Video available).

a,b) The likelihood ratios are

LR1 = 0, LR2 = 8, LR3 = 0, LR4 = 1.

c,d) Scaling against unrelated is according to conventions. With flat priors

P (Hi | data) =
Li

L1 + L2 + L3 + L4

.

and so

P (H1 | data) = 0,

P (H2 | data) = 8/9 = 0.89,

P (H3 | data) = 0,

P (H4 | data) = 1/9 = 0.11.

e,f) The likelihood ratios are

LR1 = 2, LR2 = 0, LR3 = 0, LR4 = 1.

9
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and the posterior becomes

P (H1 | data) = 2/(2 + 1) = 0.667,

P (H2 | data) = 0,

P (H3 | data) = 0,

P (H4 | data) = 1/(2 + 1) = 0.333.

See video for remaining questions.

Solution Exercise 3.2 (Video available).

a)-d) See hints and video.

e) The LR for P1 versus P2 is 16 for a direct match and so the data is
16 times more likely for the hypothesis of a direct match compared to
the unrelated hypothesis. Other results are interpreted similarly. P1 and
P2 are therefore most likely the same person, they may also be siblings,
LR = 6.25. Of course, this is a very simplified exercise using only one
system. With several STR markers, two siblings will most probably not
appear as a direct match due to the fact that they will most likely share
no alleles (or only one) in some systems.

f) For the direct match the LR takes the form

LR =
Pr(data | P1 = P2 = 12/12)

Pr(one is 12/12 | other is 12/12)
=

1

p212
=

1

0.252
= 16.

For the sibling match we find

LR =
Pr(data | sibs)

Pr(data | unrelated)
=

1
4
p412 + 1

2
p312 + 1

4
p212

p412
= 6.25.

g) This will only affect the results for the direct match as Familias only
accounts for these parameters in this case. Increasing the dropout prob-
ability will actually give slightly higher LR to the match between P1 and
P2. Increasing the dropin probability will decrease the LR for the match
between P1 and P2. Increasing only the typing error probability will
produce other possible matches and will give a slightly lower LR for the
direct match between P1 and P2.

Solution Exercise 3.3.
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c) This may be a realistic scenario for different reasons. A simple reason
may be that not all missing persons have been found. Another may
be that not all remains produce DNA profiles. The fact that only 8
profiles is in the set even though the total number of missing persons
is greater is accounted for in the prior.

d) This means we have some prior belief that the number of missing per-
sons is 10.

l) For results see Figure 3.1.

Figure 3.1: List of results from the DVI search for Exercise 3.3 l)

m) Not all remains where identified, this is expected as we only have ref-
erence data from 5 families. All posterior probabilities are above 99%
(except for the match between Family 3 and PM7) though only three
are greater than 99.99%.

n) The user will find a possible mutation for the match between Family 4
and PM3 for the marker vWA.

o) For results see Figure 3.2. We see that PM7 and PM8 has a possible
sibling relation. If either of the two persons match in a family we may
use this information to match both into that family. We may also
combine this information with meta data such as known relationship
between missing persons.

p) The posterior becomes considerably lower as the priors are lowered.
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Figure 3.2: Results for Exercise 3.3 o).

q) * One way is to add another pedigree in the reference family. Another
solution may be to add another reference family with the same reference
person. The difference would be how the posteriors are calculated. We
will use the first option, i.e., add another pedigree to Family 1, where
we now need to define extra persons in order to define the brother
relationship.

r) * For results see Figure 3.3. We see that we now have 4 possible matches
for Family 1, where three is with the Brother pedigree. We see that
PM5 has the highest LR in the Brother pedigree. We also see that the
posterior probabilities are spread out between the matches for Family
1, thus considerably lowering the probabilities for the match against
PM1.

s) A better solution, but more complex, would be to allow the definition
of several missing persons in the same pedigree. Familias would then
either search for each missing persons individually, or try matching all
unidentified persons with the missing persons at once. The complex-
ity using the latter approach grows exponentially with the number of
missing persons.

Solution Exercise 3.4.

b) * For results see Figure 3.4.

b) We see the same matches as in the previous exercise with slightly dif-
ferent LRs. This is partly due to the fact that the Quick scan feature
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Figure 3.3: Results for Exercise 3.3 r).

assumes a zero mutation rate model for all relationships except parent-
child.

c) A quick scan is extremely fast using no information about complex
pedigree structures. Also, sometimes relationships may be erroneously
specified or unspecified. The quick scan will perform a swift search
before doing the complete search.

h) A minor change indicating that there is a low probability that PM5
is the child (or parent) of the individual in Family 1. The LR is only
0.022. Examining the match, we find two possible mutations necessary
for this relation to be true.

i) There is no “perfect” value for the number of mismatches, but three
(3) should be an “acceptable” value. This specifies that we discard
any matches where the number of mismatches exceeds 3. For all other
matches we compute a LR, in other words if we encounter three possible
mutations for a parent child relation, we still compute an LR. Setting
the value to0 low, i.e., 0 or 1, may cause true matches to be missed, in
other words an inflated false negative rate.

Solution Exercise 3.5.

c) Comment : See manual at http://familias.no/english/manual/ for a
comprehensive list of relationships that Familias recognizes.

http://familias.no/english/manual/
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Figure 3.4: Results for Exercise 3.4 a).

i) For results see Figure 3.5.

j) We find some spurious matches, which can always expected as siblings
may share zero alleles for all typed markers, however with a low proba-
bility. Typically such relationships are resolved using more markers.

[l) A hint is to sort using Family id which will make it easier to distinguish
any matches that has been falsely reported or missed. Sister20 is missing,
performing a search with a match threshold of 1 reveals that this match
has a LR of only 9. In addition, Sister64 is missing from the list, similar
investigation as described previously reveals a LR of only 0.99 for this
match. We further find that there are a number of false matches (exceed-
ing the threshold of 10). A hint is to sort by LR and investigate the lower
matches.

Solution Exercise 3.6.

Answers are given in the exercise.

Solution Exercise 3.7.

c) The number of comparisons are found using the arithmetic series

999 + 998 + · · ·+ 1 =
999(999 + 1)

2
= 499, 500 (3.1)
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Figure 3.5: Results for Exercise 3.5 i).

In other words, nearly half a million comparisons are performed. We
also need to keep in mind that for each comparison we actually perform
a number of computations, one for each overlapping system.

d) There should be one possible match between sample 421 and 501 with a
LR of 9.8. Setting appropriate values on those parameters is extremely
difficult and depends to a large degree on the quality of the sample.
The default values are probably good enough to generally account for
low quality samples.

e) Using the same reasoning as in c) we can illustrate this with an arith-
metic series and get the total number of comparisons as 12,497,500,000.
In other words, more than 12 billion comparisons would be performed.
The blind search function in Familias would probably not cope with
the large number of comparisons. Other means, e.g., external software,
would be needed to certify that the database does not contain duplicate
entries.

h) For results see Figure 3.6.

We have four distinct matches. Looking closer at each of the matches,
it seems that none of them are really a direct match, the results suggest
another relationship, e.g., siblings?
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Figure 3.6: Results for Exercise 3.7 h).

i) See Figure 3.7 for the top results.

j) For results see Figure 3.8. Only the top-10 matches are kept.

k) For results see Figure 3.9. Only matches with an LR exceeding 100 are
kept. In total 19 matches are kept.

l) Using the top-k method we are left with a specified number of matches
while with the LR-threshold method we may possibly end up with a
large amount of matches. The top-k method may, on the other hand,
miss matches where the LR is high.

m) For results see Figure 3.10. We are left with 6 matches.

n) For results see Figure 3.11, where we have used alpha=0.5. The number
of matches that are kept is increased, alpha is the true positive rate used
in the conditional simulations. Conditional on the profile of interest,
we compute the conditional LR distribution and based on this we find
the LR threshold at the point where 0.5 (alpha) of the LR is above.

o) These settings may be relevant when we have a database from a subpop-
ulation or when there is reason to believe that the database is inbred.

p) For results see Figure 3.12.

Solution Exercise 3.8.

b) The formulae below gives LR = 6.25:
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Figure 3.7: Results for Exercise 3.7 i).

p12 <- 0.1; p13 <- 0.2; p14 <- 0.3; p15 <- 0.2; p16 <- 0.1; p17 <- 0.1

L1 <- p14^2+2*p14*(p12+p13)

t1 <- (p12^2*2*p13*p14+p13^2*2*p12*p14+p14^2*2*p12*p13)*2

t2 <- 2*4*p12*p13*p14*(p12+p13+p14)

L2 <- t1+t2

(LR <- L1/L2)

c) For results see Figure 3.13.

d) LR = 2.291667.

e) For results see Figure 3.14.

f) LR = 2.5.

g) LR = 2.958333

h) For results see Figure 3.15.

i) We can expect a high LR for the match between P1 and S2 as two
alleles are shared whereas for the other two profiles (S3 and S4) lower
LRs are excepted.
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Figure 3.8: Results for Exercise 3.7 j).

j) For results see Figure 3.16.

Solution Exercise 3.9.

e) For results see Figure 3.17.

g) The statistics file is available in the online repository at http://familias.
name, see solution files.

Solution Exercise 3.10.

d) For results see Figure 3.18. The LR is computed as 1/(2p18p19)

e) For results see Figure 3.19.

g) We find LR = d(1− d)3/p213 = 1008.997.

h) The reason for the high LR is the combination of a comparatively high
dropout probability and the rarity of the shared allele (13). As for
the match between P9 and P10, the explanation for the decreased LR
is due the fact that we consider dropouts. As a consequence the true
genotype may be a different from the one observed and we have instead
a summation over different possible genotypes.

i) For results see Figure 3.20.

j) We find LR = c(1− c)/(2p13) = 5.294118.

k) For results see Figure 3.21.

http://familias.name
http://familias.name
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Figure 3.9: Results for Exercise 3.7 k).

l) We see in Figure 3.21 that some cases give a lower LR while others
lead to a higher LR. The explanation is that given the likelihood given
that the two profiles are siblings yields a higher or lower likelihood than
what does the likelihood given that the two profiles are unrelated. See
derivation in m) for an example.

m) We find LR = 4d(1− d)3/(p213 + p13) = 34.01.

Figure 3.10: Results for Exercise 3.7 m).
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Figure 3.11: Results for Exercise 3.7 n).

Figure 3.12: Results for Exercise 3.7 p).
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Figure 3.13: Results for Exercise 3.8 b).

Figure 3.14: Results for Exercise 3.8 e).

Figure 3.15: Results for Exercise 3.8 h).

Figure 3.16: Results for Exercise 3.8 j).
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Figure 3.17: Results for Exercise 3.9 e).

Figure 3.18: Results for Exercise 3.10 d).
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Figure 3.19: Results for Exercise 3.10 e).

Figure 3.20: Results for Exercise 3.10 i).
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Figure 3.21: Results for Exercise 3.10 k).



Chapter 4

Solutions: “Dependent
markers”

4.1 Autosomal markers and FamLink

Solution Exercise 4.1 (Video available).

a) See video. Comment : Recall that a centiMorgan is a unit for measuring
genetic linkage and that, as a rule of thumb, 1cM = 1% recombination
rate. We use Haldane’s or Kosambi’s mapping functions, the former is the
more common, to relate the recombination rate (r) to the genetic distance
(d) in centiMorgans. FamLink implements Haldane’s function

r =
1− exp−2d/100

2

In FamLink the above is accomplished by Tools -> cM ....

b) The posterior should be 0.961 in favor of paternity.

c) The LR will remain the same regardless of the choice of the recombination
rate. This can be shown mathematically, see e), while the intuitive answer
is that there is not information on phase from a trio.

d) We may formulate the LR as

LR =
1

2p12
· 1

2p12
=

1

4 · 0.12
= 25

25
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given that the two markers are unlinked and in linkage disequilibrium.
To prove that the same applies also for linked markers it is in this case
sufficient to note that as the father is homozygous for both markers, re-
combination has no impact.

e) The LR is 1.952 accounting for linkage and 2.777 when not accounting for
linkage

f) File -> Save.

Solution Exercise 4.2.

a) See hints.

b) The LRs when accounting for linkage is LR(Full siblings)=1924.2 and
LR(Half siblings)=43.9. It is reasonable that the LR for the full siblings
alternative should be larger than for the half sibling case The correspond-
ing posterior probabilities become W(Full siblings)=0.977 and W(Half
siblings)=0.022.

c) The requested LR comparing full siblings and half siblings can be derived
as, LR(Full siblings)/LR(Half siblings) from a), and the resulting ratio is
43.9 ≈ 44. In other words, given the data, it is 44 times more probable
that P1 and P2 are full siblings rather than half siblings.

d) The LR(linkage) and LR(no linkage) will now coincide as a recombination
of 0.5 implies independence.

e) No, autosomal markers cannot be used to distinguish paternal from ma-
ternal half siblings as the inheritance patterns are identical. A slightly
different LR can be obtained given we have different mutation models for
female and male transitions.

Solution Exercise 4.3.

a) The LR comparing H1 versus H3, LR1,3, is 11.3 while the LR compar-
ing H2 versus H3, LR2,3, is 12.2. Even though the difference given the
current data is fairly small, the results illustrate that linked markers
can distinguish alternatives that are symmetric using unlinked mark-
ers. (The latter is indicated in the LR(no linkage) results). The LR
comparing H1 versus H2, LR1,2, is 0.926, suggesting that the data is
slightly more likely given that H2 is true.
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b,c) The answer is given in the previous discussion, i.e., the LR will change
to 9.0 for both LR1,3 and LR2,3.

d) LR1,3 now becomes 9.75 while LR2,3 = 11 and LR1,2 = 0.886.

Solution Exercise 4.4.

d) The LR accounting for linkage is 65.1 while the LR when not account-
ing for linkage is 42.25. This suggests that the evidence is slightly
underestimated when not accounting for linkage.

e) L(HP ) is calculated as p14·p21 = 0.3·0.2 = 0.06. L(HD2) is calculated as
p214·p221 = 0.32·0.22 = 0.0036. The LR is computed as 0.06/0.0036 = 277

f) The LR is computed by dividing the LR comparing HP to HD2 with
the LR comparing HD1 to HD2. The LR we seek is 277/65.1 = 4.25

f) The multiplication factor is the value comparing LR(linkage) with LR(no
linkage), in the current case given by the ratio 65.1/42.25. It gives an
indication of the over/underestimation of the LR when not accounting
for linkage. The value can be combined with the LR for calculations
for multiple other markers.

h) We compareHP with the new defence hypotheses, similarly as in f), and
get LR=277/7.9=35 for uncle and LR=277/8.4=33 for grandparent.

Solution Exercise 4.5.

d) Exploring the contents of the simulation reort we notice that if we
simulate H2 we will have situations where the data given H1 indicates
genetic inconsistencies. As FamLink does not model mutations, the
simulations given H2 are not as relevant.

e) 0.632. Comment : to find the median effect of linkage, we must consider
the table comparing LR(no linkage) with LR(linkage).

f) 1.14 (Hint: in Excel, select cell P1 and insert “=AVERAGE(P6:P1007)”,
where AVERAGE may be substituted to the proper word in your lan-
guage.)

g) Assuming we simulate data given H2, genetic inconsistencies can be
observed under H1 thus yielding LR=0. The exact number is found in
the simulation report.
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h) As the number of simulations where the LR is zero is high (907) we
need a greater number of simulations. This is also generally true. Also,
the necessary LR is not indicated in the raw data output. We must
calculate 1/LR presented in column D. Taking the average over the
results should provide a value closer to 1, given that the number of
simulations approaches infinity. In other words, running say 100,000
simulations we can expect the average to be closer to 1.

Solution Exercise 4.6.

a) The recombination rate is approximately 0.042, calculated using Hal-
dane’s mapping function. For small values of genetic distance the re-
combination rate is approximately equal to d/100, where d is the dis-
tance in cM.

d) The LR is 0.75 when accounting for linkage and 2.055 when not ac-
counting for linkage. The multiplication factor is calculated as
0.75/2.055 = 0.36, i.e., the LR is overestimated by a factor of more
than 2 when not accounting for linkage.

e) From other software, not accounting for linkage, we already have LR(no
linkage) for the two markers, e.g., from Familias. The multiplication
factor is the ratio LR(linkage)/LR(no linkage). By multiplying the
overall LR (obtained in another software) with the multiplication fac-
tor, the LR(no linkage) for the two markers cancels out thus obtaining
a new overall LR where linkage is accounted for.

f) The median is given by 0.59 while the percentiles are 5%=0.41 and
95%=4.0 when H1 is true. When H2 is true, the median is given by
0.54 with percentiles is 5%=0.54 and 95%=3.16

Solution Exercise 4.7.

d) The Search and subtract method will make sure that the total fre-
quencies sum to one once the calculations are performed by searching
the frequency database and putting all alleles not observed in the cur-
rent case into one rest allele. If the total sum of allele frequencies for any
given system is above 1, the method will remove some frequency prob-
ability distribution from the rest allele. This method only works when
not accounting for mutations. Unless the simple mutation model is con-
sidered, each allele will have different weights and thus we must treat
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them separately. In Familias, the method would only be applicable if
we do not consider mutations or if the Equal probability (Simple)

is used.

e) The LR(linkage) is 3979202 while the LR(no linkage) is 996836; a large
LR in favor of H1.

f) Alternative hypotheses should be considered as hypotheses where one
of the siblings are a half sibling or unrelated while the other two are
full siblings. As H2 now indicates three unrelated individuals and H1

indicates full siblings, a high LR can be expected even though one of
the individuals is a half sibling to the others.

Solution Exercise 4.8.

c) The LR(linkage) is 2401 while the LR(no linkage) is 1123. The corre-
sponding multiplication factor is 2.1. The new combined LR becomes
500 · 2.1 = 1050. This may very well change our conclusion, provided
the threshold for providing a positive conclusion, i.e., stating that the
data favors H1, is 1000.

Solution Exercise 4.9.

a) One solution is given below.

We first derive the likelihood given H1 as

L(H1) = Pr(data | H1)

= Pr(IL1 = 0) Pr(data | IL1 = 0)
(

Pr(IL2 = 0 | IL1 = 0) Pr(data | IL2 = 0)

+ Pr(IL2 = 1 | IL1 = 0) Pr(data | IL2 = 1)
)

+ Pr(IL1 = 1) Pr(data | IL1 = 1)
(

Pr(IL2 = 0 | IL1 = 1) Pr(data | IL2 = 0)

+ Pr(IL2 = 1 | IL1 = 1) Pr(data | IL2 = 1)
)

= 0.5 · 4p9p212p15
((

(1− r)2 + r2
)
4p19p

2
21p25 + 2r(1− r)p19p21p25

)
+ 0.5 · p9p12p15

(
2r(1− r)4p19p221p25 + ((1− r)2 + r2)p19p21p25

)
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L(H2) = Pr(data | H2)

= 1/32 · 4p9p212p15
((

(16(1− r)5 + 40(1− r)4r + 64(1− r)3r2 + 80(1− r)2r3 + 48(1− r)r4 + 8r5)
)
4p19p

2
21p25

+
(
40(1− r)4r + 96(1− r)3r2 + 80(1− r)2r3 + 32(1− r)r4 + 8r5

)
p19p21p25

)
+1/32 · p9p12p15

((
40(1− r)4r + 96(1− r)3r2 + 80(1− r)2r3 + 32(1− r)4 + 8r5

)
4p19p

2
21p25

+
(
16(1− r)5 + 40(1− r)4r + 64(1− r)3r2 + 80(1− r)2r3 + 48(1− r)r4 + 8r5

)
p19p21p25

)
We omit details on how to finally derive the LR as this is easily done by
simply dividing L(H1) with L(H2).

b) * The LR becomes 1.015. The exact LR is 1.0157..., use the export LR
function to get more decimals.

c) See Figure 4.1.

Solution Exercise 4.10.

b) See results in Figure 4.2.

e) The LR computed in FamLink is 1.021e+6 (found at the end of the report
file), which is about three times lower than the LR computed in Familias.
This LR is calculated for all markers and replaces the LR calculated in
Familias. Not to be confused with the multiplication factor that can be
multiplied with the LR obtained in some other software.

f) There are four markers residing on chromosome 2, as well as three on
chromosomes 5, 11 and 21.

Solution Exercise 4.11.

a) * Omitting details we get,

LR =
Pr(data | H1)

Pr(data | H2)

=

0.5 · 4p12p
′

12

((
(1− r)2 + r2

)
4p21p

′

21 + 2r(1− r)p21
)

+ 0.5 · p12
(

2r(1− r)4p21p
′

21 + ((1− r)2 + r2)p21

)
4p12p

′
12 · 4p21p

′
21
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where p
′
12 and p

′
21 is sloppy notation to indicate that this is the second

time we observe this allele.

b) * The LR equals 2.058

c) ** Fortunately we do not need to concern ourselves with the alleles not
shared between the individuals and therefore, p

′
12 = θ + (1 − θ)p12 and

p
′
21 = θ + (1 − θ)p21 are the only two (updated) frequencies we have to

compute. We may compute the updated frequencies also for the other
alleles, but these will cancel out in the LR.

d) ** LR equals 1.72

e) ** See results in Figure 4.3.

4.2 X-chromosomal markers and FamLinkX

Solution Exercise 4.12.

a) The inheritance patterns are different for male and female meioses. While
males pass on their only X-chromosome unchanged, the two X-chromosomes
for females may recombine.

b) The recombination rate is 0.001 as can be found using Tools -> cM ....

c) In order to account for linkage disequilibrium (association of alleles) we
need to specify haplotype observations.

d) We find

r2 =
(p12p16 − p12,16)2

p12p13p16p17
=

(0.6 · 0.6− 59/100)2

0.6 · 0.4 · 0.6 · 0.4
= 0.918.

which indicates a strong LD between the alleles.

g) LR (Exact)=99.97. Deviation from the theoretical value 100 is a conse-
quence of the fact that λ is not exactly zero. FamLinkX does not allow
the λ to be zero.
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λ LR
0.0001 13.01
0.01 12.98
1 10.69
100 1.50
10000 1.03

Table 4.1: Table of LRs for a number of different λ-s .

h) The LR changes dramatically. It now becomes 0.02 (LR(Exact)=0.21721,
LR(cluster)=0.21709). The explanation is that given H1 and disregarding
mutations, the haplotypes for the child are fixed, while given H2 other
more common haplotypes are more probable. The consequence is that
the likelihood is much lower given H1 as this requires rare haplotypes
for the child. Using a low value on λ we put almost all weight on the
observations. Thus the haplotype observations will be crucial for the
calculation of LR.

i) The answers may change quite a bit depending also on the choice of λ.

j) The degree of LD is extremely high which is evident from the results. It
is also more probable that individuals actually share the most common
haplotypes.

Solution Exercise 4.13.

a) The inheritance patterns differ. Two paternal female half siblings are
obliged to share one allele IBD, whereas for maternal half siblings they
may share one allele IBD with probability 0.5 and zero alleles IBD with
probability 0.5.

d,e) Scaling versus Unrelated we find LR(Full siblings)=5050, LR(Maternal
half siblings)=50.5 and LR(Paternal half siblings)=100. Looking at the
LRs assuming LE, we see that the information in the haplotypes, and the
underestimation of the LR, is great.

Solution Exercise 4.14.

c) The LRs are given in Table 4.1.

d,e) The LR approaches 13 as λ goes to 0 and 1 as λ goes to infinity, which
is the LR when we do not account for haplotype observations. As λ
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λ LR
0.0001 0.8349
0.01 0.8348
1 0.8322
100 0.955
10000 1.270

Table 4.2: Table of LRs (Exact) for a number of different λ-s when the child
is 13/13 for L1.

becomes big the expected haplotype frequencies are given much weight
and dominate the haplotype probability estimates.

f) The LRs are given in Table 4.2. It seems that the value of λ does not
influence the results considerably. Briefly, the explanation is that for H1

we will sum over possible haplotypes for the founders and haplotypes with
few observations and with many observations will be necessary to explain
the data.

Solution Exercise 4.15.

b,c) The most probable relationships are given by

H1 : The three females are all full siblings

H2 : Two females are full siblings and the third (named F3) is a paternal
half sibling

H3 : Two females are full siblings and the third (named F3) is a maternal
half sibling

When generating pedigrees in Familias we need some constraints. Other-
wise the software will generate too many irrelevant pedigrees. Specifying
all the typed females as children will create no pedigrees where they are
parents to each other or other persons. Specifying the untyped persons
as born the same year will create no pedigree where they are parent of
each other.

g) Scaling versus H2 we get an LR in favor of H1 as 1.8e+ 11 and an LR in
favor of H3 as 2.42e + 5. The LR comparing H1 and H3 is 7.44e + 5 in
favor of the former hypothesis.
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λ LR
0.0001 4.9e-7
1 0.006
100 11.34
1000 217.93

Table 4.3: Table of LRs (exact)for a number of different values on λ

h) The final conclusion is that the data provide strong evidence in favor
of the three females being full siblings, also compared to the next most
probable hypotheses, i.e., H3.

Solution Exercise 4.16.

c) The LRs are given in Table 4.3

d) We can conclude that for the range of λ–s considered, we obtain LRs
that range from evidence against relationship to results that provide weak
evidence in favor of relationship.

e) The answer can be found be exploring the frequency estimation tool.
(Hint, found in the Edit cluster dialog.) We must further explore the
hypotheses and see what haplotypes are necessary to explain the data.
Given H1 we see that the females share a common haplotype in each
cluster, i.e., a certain haplotype can be distinguished. These haplotypes
are rare, without any prior observations in the database. Given low values
of λ, little weight will be given to unobserved haplotypes and they will
have low frequencies. As a consequence the likelihood Pr(data | H1) will
be small, while the likelihood under H2 will be higher as other, more
common, haplotypes are more likely. In other words, without knowledge
about the phase of what haplotypes are true under H2, we must sum over
all possible haplotypes.

f) It is indeed difficult to give a conclusion in the current case and to decide
which λ to report. One may say the the evidence is inconclusive. We
should further investigate if we are using an appropriate database, as
the shared haplotype may be common in other populations. Fortunately,
Example 7.4 explains how λ may be estimated.

Solution Exercise 4.17.
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c) LR(Exact) = 5.755e+ 8

d) LR(Exact) = 7.310e+ 6

e) Given that λ equals to 1, LE model we will underestimate the evidence
with a factor of 577/8.89=65. If we, on the other hand, use a λ of 212
(in this case, the size of the database), we get LRs that are close to each
other, i.e., the difference between the model accounting for LD and the
model assuming LE is small.

f) ** See Exercise 4.19

Solution Exercise 4.18.

d) The LR(Cluster) = 4.5e− 5 and the LR(LE) = 1.95

e) Tuning the value on λ, we see that when the value increases, LR(Cluster)
approaches LR(LE).

Solution Exercise 4.19.

a) The LR is computed as

LR =
Pr(1/1) · p2

Pr(1/1) · Pr(1/2)
=

1

2 · 0.4
= 1.25.

b) The LR is computed as

LR =
p1 · p2

p1 · Pr(1/2)
=

1

2 · 0.4
= 1.25.

d) LR = 1.25× 1
0.6

= 2.08333 in favor of paternity.

f) The LRs are given in Table 4.4

g) *The theoretical formula is derived below

LR =
H1,3H2,3

H1,32H2,3H1,3

=
1

2H1,3
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λ LR
0.01 49.89
1 40.73
100 4.00

Table 4.4: Table of exact LRs for different lambda-s.

where H1,3 is the frequency of the haplotype with alleles 1 at L1 and 3
at L2. Using the the formula for haplotype frequency estimation we get
that

LR =
1

2H1,3

=
1

2 · 0.125
= 4.

h) We use that

LR =
1

2H(1, 3)

and (by using the formula for haplotype estimation)

LR =
C + λ

2(ci + piλ)

where C = 100, ci = 1 and pi = 0.4 · 0.6 = 0.24. Plotting functions are
conveniently done in the open source software R, presented in detail in
Chapter 5:

Function <- function(x) (100+x)/(2*(1+0.24*x))

curve(Function, 0, 1000, xlab="lambda",ylab="LR")

title(main="LR as a function of lambda")

grid()

Function(0.01)

Function(1)

Function(100)

Other software may also be used to produce the same plot. Figure 4.4
illustrates LR as a function of different values on λ.
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i) ** The theoretical formula is derived below

LR =
H12,17H12,17

H12,17H2
12,17

=
1

H12,17

=
1

0.01
= 100.

Solution Exercise 4.20.

a) The founder alleles are given by the alleles for the first father, the common
mother and the second father. In total, there are 4 different alleles. The
alleles for the fathers are given by the alleles of the sisters while the
alleles for the mother are given by the alleles of the sisters as well as other
possible alleles. In total, we have 16 different founder alleles sets. These
are given by the sets [12 13 15 12], [12 15 13 12], [12 13 12 15], [12 12 13
15], [13 12 x 15], [13 x 12 15], [13 12 15 12] and [13 15 12 12], where x
represents any of the five possible alleles.

b) There are now a number of possible founder alleles sets, for the fathers
we still consider only the observed alleles, while for the mother we must
consider the possibility of a mutation. The same sets as in a) are still
possible, while in additition several other sets where the mother have
alleles not observed in the two individuals are possible. For instance,
the set [12 14 15 12] is possible, where a one step mutation must have
produced the genotype for F1.

We can use that for the sets [12 x y 12], [12 x y 15], [13 x y 15] and
[13 x y 12] all values on x and y are possible with the exceptions that in
the first case both cannot be 12, 13, 15 or 16 and combinations 12/13,
15/16 are not possible either; in the second case both cannot be 14, 15
or 16 and combinations 14/15, 14/16, 15/16 are not possible; in the third
case both cannot be 14, 15 or 16 and combinations 14/15, 14/16, 15/16
are not possible; in the last case both cannot be 12, 13, 14, 15 or 16
and combinations 12/13, 14/15, 14/16, 15/16 are not possible. There are
in total 100 different possible sets, if we subtract the sets that are not
possible we get in total 100-27=73 different founder allele sets.

c) There are two meioses to account for, the two from the common mother
to the two sisters.

d) There are 16 · 2 = 32 different combinations to consider.

e) There are 16 · 2 · 2 = 64 different combinations to consider for the second
marker
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f) There are 16 · 2 · 2 · 16 = 1024 different combinations to consider for the
second marker

g) There are 16 · 2 · 2 · 16 · 16 = 16, 384 different combinations to consider for
the third marker

h) The unrelated persons can be treated separately and we have that the
number of possible founder allele states for the combination of the three
markers are given by the total number of different haplotype setups. In
other words, there are 2 · 23 = 16 different combinations to consider for
the third marker given H2. Linkage/recombination is not a topic for
unrelated individuals. Consider H1, linkage has a minor effect in the
current case, but given that many meioses are introduced, the number of
computations will grow considerably. The main contributor to the number
of different computations given H1 is the possible founder alleles sets we
must consider.

Solution Exercise 4.21.

d) The LR becomes 0.075, i.e. the data given the paternal half sibling
relation is 1/0.075=13 times more probable.

f) The LR becomes 2.28 and the data therefore indicate that the maternal
half sibling relation is twice as probable.

g) The LR becomes 0.21.

i) The LR in e) now becomes 0.47 while the LR in g) becomes 0.09

j) As we scale against the pedigree where the genetic inconsistency can
be detected, i.e., paternal half siblings, the LR can be high given an
“inappropriate” mutation model is selected. It should be noted that by
swapping the hypotheses in LR formula, we would get an equally low
LR. However, it is important to keep in mind that given the current
example, how we model mutations is crucial to the conclusion.

Solution Exercise 4.22.

c) The LR becomes zero for all computation models.

d) A possible mutation is present at the marker DXS10101. A hint is to view
and compare the data for both individuals in the Add DNA data window.
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f) LR(Exact) = 6.9e+ 007, the other computation models still yield an LR
of zero as these do no consider mutations.

g) LR(Exact) = 6.3e+ 007,

h) When we lower the value on the parameter, more“extreme” scenarios are
considered, like double mutations etc, which individually provide a low
likelihood but together contribute to the overall sum.

i) Same results as in g).

j) Again, same results as in g).

k) LR(Step=2 )=119,793; LR(Step=1 )=119,436; LR(Step=0 )=117,957. It
seems that whether the Step parameter is 1 or 2 only has a minor effect
on the results, while lowering it to zero has a, in comparison, larger effect.
However, the change may be considered as small compared to the large
LRs.

l) The effect of the Step parameter is smaller unless two mutations are
needed to explain the data. In the current case setting the step parameter
to zero indicates that the common father under H1 cannot possess any
alleles other than the ones observed in the data. This restriction prohibits
him from having some alleles.
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Figure 4.1: LR as a function of the recombination rate
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Figure 4.2: Results for Exercise 4.10
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Figure 4.3: Results for Exercise 4.11 e)
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Figure 4.4: Plot of LR versus different values on λ.
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Chapter 5

Solutions: “Relationship
inference with R”

Solution Exercise 5.1.

a) We find

LR =
Pr(data | paternity)

Pr(data | non-paternity)

=
Pr(child = A/C | mother = A/B,AF = C/D, paternity)

Pr(child = A/C | mother = A/B)

=
1/4

0.3/2
=

1

0.6
= 1.666667.

b) The object result contains a vector posterior, which lists the posterior
probabilities of each of the pedigrees, in the same order as they were
input, and assuming they have equal prior probabilities. We see that the
posterior probability of the pedigree indicating paternity is 0.625. We
also find the likelihood ratio for the second pedigree relative to the first
equal to 1.666667, which is the same result as we obtained manually. The
likelihoods 0.00144 and 0.00240 are also listed; these are the probabilities
of observing all the genetic data specified, under the hypotheses of non-
paternity or paternity, respectively.

c) For example

45
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persons2 <- c("body", "B1", "B2", "father", "mother",

"grandma", "grandpa")

sex2 <- c("male", "male", "male", "male", "female",

"female", "male")

ped3 <- FamiliasPedigree(id = persons2, dadid =

c("grandpa", "father", "father", "grandpa",

NA, NA, NA), momid = c("grandma", "mother", "mother",

"grandma", NA, NA, NA), sex = sex2)

ped4 <- FamiliasPedigree(id = persons2, dadid =

c(NA, "father", "father", "grandpa", NA, NA, NA),

momid = c(NA, "mother", "mother", "grandma",

NA, NA, NA), sex = sex2)

ped5 <- pedigree(id = persons2, dadid =

c("grandpa", "father", "father", "grandpa",

NA, NA, NA), momid = c("grandma", "mother",

"mother", "grandma", NA, NA, NA), sex = sex2)

ped6 <- pedigree(id = persons2, dadid = c(NA,

"father", "father", "grandpa", NA, NA, NA), momid =

c(NA, "mother", "mother", "grandma", NA, NA, NA),

sex = sex2)

plot(ped5)

plot(ped6)

d) body <- c("A", "A")

B1 <- c("A", "B")

B2 <- c("A", "C")

datamatrix2 <- rbind(body, B1, B2)

pedigrees2 <- list(notuncle = ped4, uncle = ped3)

result2 <- FamiliasPosterior(pedigrees2, marker,

datamatrix2)

We get an LR in favour of the uncle hypothesis of 3.895833.

e) If the father does not have an A allele, his genotype must be B/C. Thus
his possible genotypes are A/A, A/B, A/C, A/D, and B/C.

possibleGenotypes <- matrix(c(

"A", "A",

"A", "B",
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"A", "C",

"A", "D",

"B", "C"), 5, 2, byrow = TRUE)

resultTable <- matrix(0, 5, 2)

for (i in 1:5) {

father <- possibleGenotypes[i,]

datamatrix3 <- rbind(datamatrix2, father)

resultTable[i,] <- FamiliasPosterior(pedigrees2, marker,

datamatrix3)$likelihoods

}

We get

> resultTable

[,1] [,2]

[1,] 3.00e-06 9.0750e-05

[2,] 4.50e-06 1.2375e-05

[3,] 6.00e-06 1.6500e-05

[4,] 6.00e-06 1.6500e-05

[5,] 1.65e-05 4.1250e-06

> apply(resultTable, 2, sum)

[1] 0.00003600 0.00014025

These are the same results as should be obtained in the previous exercise.

f) First note that

Pr(body = A/A, father = A/A,B1 = A/B,B2 = A/C | is uncle)

= Pr(B1 = A/B,B2 = A/C | father = A/A)

·Pr(body = A/A, father = A/A | full brothers)

We see that in this case, the mother must have genotype B/C, so

Pr(B1 = A/B,B2 = A/C | father = A/A) = 2 · 0.2 · 0.3 · 1

2
· 1

2
= 0.03
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How to compute the last factor? One way is to use the IBD terminology:

Pr(body = A/A, father = A/A | full brothers)

= Pr(body = A/A, father = A/A | zero alleles IBD)

·Pr(zero alleles IBD | full brothers)

+ Pr(body = A/A, father = A/A | one allele IBD)

·Pr(one allele IBD | full brothers)

+ Pr(body = A/A, father = A/A | two alleles IBD)

·Pr(two alleles IBD | full brothers)

= 0.14 · 1

4
+ 0.13 · 1

2
+ 0.12 · 1

4
= 0.003025

The total result becomes 0.03 · 0.003025 = 0.00009075 which equals the
result obtained above.

Solution Exercise 5.2.

a) The code for the other mutation models follows:

require(Familias)

R <- 0.005

r <- 0.5

persons <- c("CH", "AF")

sex <- c("male", "male")

ped1 <- FamiliasPedigree(id = persons, dadid <- c("AF", NA),

momid = c(NA, NA), sex = sex)

ped2 <- FamiliasPedigree(id = persons, dadid = c(NA, NA),

momid = c(NA, NA), sex = sex)

mypedigrees <- list(unrelated = ped2, isFather = ped1)

alleles <- 14:21

p <- c(0.072, 0.082, 0.212, 0.292, 0.222, 0.097, 0.020, 0.003)

CH <- c(16, 17)

AF <- c(14, 15)

datamatrix <- rbind(CH, AF)

mutmodels <- c("Equal", "Proportional", "Stepwise")

LR <- rep(NA, 3)

names(LR) <- mutmodels

theta <- 0
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for(i in mutmodels[1:3]){

locus1 <- FamiliasLocus(p, alleles, "locus1", MutationModel = i,

MutationRange = r, MutationRate = R)

LR[i] <- FamiliasPosterior(mypedigrees, locus1 ,

datamatrix, kinship = theta)$LRperMarker[ , 2]

}

b) This follows from

pc <- 0.212

pd <- 0.292

m <- R/7

(1/2)*((pd+pc)*m)/(pc*pd)

c) Let (a, b, c, d) = (14, 15, 16, 17) and

mac <- 0.0012598425

mbc <- 0.0016842105

mad <- 0.0006299213

mbd <- 0.0008421053

Then the answer follows from

(1/4)*((mac + mbc)*pd+(mad+mbd)*pc)/(pc*pd)

d) Only one step mutations are allowed for this model. The required code
follows:

M <- matrix(c(

0.9950,0.0050,0 ,0 ,0 ,0 ,0 ,0 ,

0.0025,0.9950,0.0025,0 ,0 ,0 ,0 ,0 ,

0 ,0.0025,0.9950,0.0025,0 ,0 ,0 ,0 ,

0 , 0,0.0025,0.9950,0.0025,0 ,0 ,0 ,

0 , 0,0 ,0.0025,0.9950,0.0025,0 ,0 ,

0 ,0 ,0 ,0 ,0.0025,0.9950,0.0025,0 ,

0 ,0 ,0 ,0 ,0 ,0.0025,0.9950,0.0025 ,

0 ,0 ,0 ,0 ,0 ,0 ,0.0050,0.9950),

8, 8, byrow=TRUE)
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locus1 <- FamiliasLocus(p, alleles, "locus1",

MutationModel = "custom",

MutationMatrix = M)

FamiliasPosterior(mypedigrees,

locus1, datamatrix,

kinship = theta)$LRperMarker[ , 2]

# Using the formula we find the same answer:

mac <- 0

mbc <- 0.0025

mad <- 0

mbd <- 0

(1/4)*((mac + mbc)*pd+(mad+mbd)*pc)/(pc*pd)

Equal Proportional Stepwise Stationary Custom
LR 0.00291 0.00626 0.00473 0.00640 0.00295

Table 5.1: LR for various mutation models in Exercise 5.2.

Solution Exercise 5.3. The solutions are essentially given in the exercise.
There may some small differences in answers from the two versions as a result
of rounding error.

Solution Exercise 5.4.

The code below does the job

a) r <- seq(0, 0.5, length = 1000)

kappa1 <- (1 - r)/2

R <- r^2 + (1 -r)^2

kappa2 <- R/2

kappa3 <-((1-r)*R+r/2)/2

plot(r, kappa1, type = "l", lty = 1,

ylab = "Pr(IBD = 1 for both markers)",

xlab = "recombination rate")

lines(r, kappa2 , lty = 2)

lines(r, kappa3 , lty = 3)

legend (0.22, 0.5 , c("gf-gc","half-sibs","uncle-nep."),

lty = 1:3)
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b) Below, one large pedigree is plotted. Alternatively, three smaller plots
can be made.

require(paramlink)

ped <- nuclearPed(2, sex = c(1, 2))

ped <- addOffspring(ped, mother = 4, noffs = 1)

ped <- addOffspring(ped, father = 5, noffs = 1)

plot(ped, title = "")

c) See derivation of (6.23) in the book. Possible code follpws:

p <- c(0.5, 0.5) #other values give same result

rho <- 0.29

g6 <- c(1, 1)

m1 <- marker(ped, alleles = 1:2, 6, g6, afreq = p)

m2 <- marker(ped, alleles = 1:2, 6, g6, afreq = p)

res <- twoMarkerDistribution(ped, 1, m1, m2, theta = rho)

numerator <- res["2/2", "2/2"]*p[1]^4

res <- twoMarkerDistribution(ped, 8, m1, m2, theta = rho)

denominator <- res["2/2", "2/2"]*p[1]^4

LR <- numerator/denominator

LR.formula <- (1-rho)/(rho^2+(1-rho)^2)

LR == LR.formula #TRUE

Solution Exercise 5.5.

A suggestion for solution is essentially provided in the exercise.

Solution Exercise 5.6.

A suggestion for solution is essentially provided in the exercise.

Solution Exercise 5.7.

a) The code follows:

require(disclapmix)

data(danes)

N <- sum(danes$n)

b) p.count <- 1/(N + 1)
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c) s <- sum(danes$n == 1L)

kappa <- (s + 1)/(N + 1)

p.brenner <- (1 - kappa)/(N + 1)

d) danes_cor <- danes

danes_cor$DYS389II <- with(danes_cor, DYS389II - DYS389I)

danes_db <- as.matrix(danes_cor[rep(1L:nrow(danes_cor), danes_cor$n),

1 : 10 ])

dim(danes_db)[1]

e) fit <- disclapmix(x = danes_db, clusters = 4L,

iterations = 500L)

singletons <- as.matrix(subset(danes_cor,

n == 1L)[, 1L : 10L ])

p.disclap <- predict(fit, newdata = singletons)

range(p.disclap)

f) index.singletons <- (1:dim(danes_cor)[1])[ danes_cor$n == 1L ]

fit <- disclapmix(x = danes_db[ -index.singletons[1], ],

clusters = 4L, iterations = 500L)

predict(fit, newdata = matrix(

danes_db[ index.singletons[1], ], nrow = 1 ))

Solution Exercise 5.8.

The code follows:

a) require(DNAtools)

data(dbExample)

head(dbExample, 5) # prints first 5 lines

tail(dbExample, 5) # prints last 5 lines

str(dbExample) # displays the structure of the database

phat <- freqEst(dbExample)

b) barplot(phat[[ 1 ]], sub = names(phat.new)[[1]])

par(ask = TRUE)

lapply(phat, barplot)

par(ask = FALSE)

# Comment: Note that default ordering is not numerical and

# therefore allele 10 is sorted before 6 for THO1 as is seen from:

barplot(phat[[ 9 ]], sub = names(phat.new)[[ 9 ]])
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c) set.seed(123)

imdb <- dbSimulate(phat, theta = 0, n = 1000)

phat.new <- freqEst(imdb)

par(ask = TRUE)

lapply(phat, barplot)

par(ask = FALSE)

# Note that allele designations differ in the simulated database

# being 1,2, ...
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Chapter 6

Solutions: “Models for pedigree
inference”

Solution Exercise 6.1 (Properties of the mutation matrix).

Note that

Mf1
t = (1− c)I1t + c1tp1t = (1− c)1t + c1t = 1t

as required. The diagonal elements of Mf are (1−c)+cpi and the off digonal,
cpi, all positive. Stationarity follows from

pMf = p(1− c)I + pc1tp = (1− c)p+ cp = p.

By definition,

R = 1−
n∑

i=1

miipi = 1−
n∑

i=1

(
(1− c)pi + cp2i

)
= 1− Tr(D(p)M).

Solution Exercise 6.2 (Mixtures and relatives).

a) Enter

E <- 1:3

datamatrix <- generate( E, K = NULL, 2)

b) Revise the code below.

c,d) The complete code is

55
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require(Familias)

require(BookEKM)

persons <- c("CH", "MO", "AF")

ped1 <- pedigree( id = persons, dadid = c( "AF", NA, NA),

momid = c( "MO", NA, NA),

sex <- c( "male", "female", "male"))

ped2 <- pedigree( id = c( persons, "TF"),

dadid = c( "TF", NA, NA, NA),

momid =c ( "MO", NA, NA, NA),

sex =c ( "male", "female", "male", "male"))

pedigrees <- list( isFather = ped1, unrelated = ped2)

E <- 1:3 ; gAF <- c( 3,4)

datamatrix <- generate( E, K = NULL, 2)

AF <- rep( gAF, dim(datamatrix)[2]/2)

datamatrix <- rbind(datamatrix,AF)

datamatrix <- as.data.frame(datamatrix)

rownames(datamatrix)[c(1,2)] = c( "CH", "MO")

R <- 0.00

locus <- FamiliasLocus( frequencies = rep( 0.2, 5),

allelenames = c( 1:5), name = "V1",

MutationRate = R)

theta <- seq(0, 0.1, length = 100)

LR <- NULL

for (i in theta)

LR <- c(LR,mix3Familias( pedigrees, locus, datamatrix,kinship=i)$LR)

plot(theta, LR, type = "l")

Remaining solutions are modifications of the above ones.

e) We find LR = 2.5.

Solution Exercise 6.3 (Dropout. Models and interpretations).

a) Using Bayes theorem we find

Pr(D = 1 | data = a/−) =
pa2d(1− d)

(1− d)2p2a + 2pad(1− d)

=
2d

(1− d)pa + 2(1− pa)d
→ 1 as pa → 0
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b) We find

Pr(a/b | data = a/−) =
d(1− d)2pa(1− pa)

(1− d)2p2a + 2pa(1− pa)d(1− d)

=
2d(1− pa)

(1− d)pa + 2d(1− pa)
.

Solution Exercise 6.4 (Inbreeding. Jacquard. paramlink).

a) These states are 0 as the probability of IBD within an individual is 0.

b) The IBD coefficients for full sibs are 1/4, 1/2 and 1/4 corresponding for
sharing 0, 1 or 2 alleles, from which the first part follows. The second
part is a consequence of the definition of IBD.

c) The below code produces the required plots:

require(paramlink)

alleles <- c(’a’, ’b’)

H2 <- nuclearPed(2)

m2 <- marker(H2, alleles=alleles, 3:4, c(’a’,’a’))

H1 <- addParents(H2, 1, father=10, mother=11)

H1 <- addParents(H1, 2, father=10, mother=11)

m1 <- marker(H1, alleles=alleles, 3:4, c(’a’,’a’))

plot(H1, marker=m1)

plot(H2, marker=m2)

d) p1 <- c(0.1, 0.9)

m1.empty <- marker(H1, alleles = alleles, afreq = p1)

oneMarkerDistribution(H1, ids = c(3,4), partial = m1.empty,

loop_breaker = 1)

e) Some algebra shows this; a numerical check:

p <- p1[ 1]

Delta <- c(2, 1, 4, 1, 4, 1, 7, 10, 2)/32

g <- c(p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4)

sum(Delta*g)

(1+8*p+6*p^2+p^3)*p/16
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f) This follows from above previous expressions. The code for the plot:

p <- seq(0.001, 0.1, length = 1000)

LR <- (1/4)*(1+8*p+6*p^2+p^3)/(p+2*p^2+p^3)

plot(p, log(LR,base = 10), type = "l")

g) The code and a check follow:

m1 <- marker(H1, alleles = alleles, afreq = p1, 3, c("a","a"))

oneMarkerDistribution(H1, 4, m1, loop_breakers = 1)

# For instance Pr(a/a|a/a)

0.0116/(0.0116+0.0061+0.0147)

h) For instance, we may enter

Nsim <- 10000

res <- markerSim(H1, N = Nsim, available = 4,

partial = m1, loop_breaker = 1)

genotypes <- as.data.frame(res, singleCol = TRUE, sep= "/")

geno4 <- as.character(genotypes[6, -(1:5)])

table(geno4)/Nsim

Solution Exercise 6.5 ( Jacquard coefficients. identity).

Possible code is given below:

a) install.packages("identity")

require(identity)

ped <- rbind(c(1, 0, 0),

c(2, 0, 0),

c(3, 1, 2),

c(4, 1, 2),

c(5, 3, 4),

c(6, 3, 4))

identity.coefs(c(5, 6), ped) # Pedigree H1

identity.coefs(c(3, 4), ped) # Pedigree H2

b) ped <- rbind(c(1, 0, 0),

c(2, 0, 0),

c(3, 2, 1),
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c(4, 3, 1))

Delta <- identity.coefs(c(1, 4), ped)[ 2, -c(1, 2)]

p <- 0.1

g <- c(p, p^2, p^2, p^3, p^2, p^3, p^2, p^3, p^4)

sum(Delta*g)

require(Familias) #Checking with Familias)

persons <- c("I.1", "I.2", "II.2", "III.1")

sex <- c("male", "female", "female", "male")

ped1 <- pedigree(id = persons, dadid =c(NA, NA, "I.1", "I.1"),

momid = c(NA, NA, "I.2", "II.2"), sex = sex)

locus1 = FamiliasLocus(c(p, 1-p), c("a", "b"))

I.1 <- III.1 <- c("a", "a")

datamatrix <- rbind(I.1, III.1)

FamiliasPosterior(ped1, locus1, datamatrix)

require(paramlink) # Checking with paramlink

x <- nuclearPed(1, sex = 2)

x <- addOffspring(x, mother = 3, father = 1, noffs = 1,sex = 1)

x <- breakLoops(x, loop_breakers = 3)

m <- marker(x, alleles =c("a","b"), 1, c("a", "a"),

4, c("a", "a"), afreq = c(p, 1-p))

likelihood(x, m)

Solution Exercise 6.6.

A suggestion for solution is essentially provided in the exercise.
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Chapter 7

Solutions: “Parameter
Estimation and Uncertainty”

Solution Exercise 7.1 (7.1: Estimation of kinship).

The code for the calculation in Familias could be (see plot for explanation
of abbreviations):

require(Familias)

persons <- c("gf" , "gm" , "mo1","so1","so2", "mo2","co1","co2")

sex <- c("male", "female","female", "male", "male", "female", "male", "male")

dadid <- c(NA, NA , NA, "gf" ,"gf", NA, "so1", "so2")

momid <- c(NA, NA, NA, "gm" ,"gm", NA, "mo1", "mo2")

cousins <- FamiliasPedigree(id = persons, dadid = dadid, momid = momid, sex = sex)

plot(cousins)

dadid <- c(NA, NA , NA, "gf" ,"gf", NA, NA, NA)

momid <- c(NA, NA, NA, "gm" ,"gm", NA, "mo1", "mo2")

unrelated <- FamiliasPedigree(id = persons, dadid = dadid, momid = momid, sex = sex)

pedigrees <- list(isCousins = cousins, unrelated = unrelated)

data(NorwegianFrequencies)

D21S2055 <- FamiliasLocus(NorwegianFrequencies$D21S2055,

name = "D21S2055", MutationRate = 0.005,

MutationModel = "Proportional")

co1 <- c(28,28)

co2 <- c(28,28)

datamatrix <- rbind(co1, co2)

kinship1 <- 0

61
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kinship2 <- 0.1

LR1 <-FamiliasPosterior(pedigrees, D21S2055, datamatrix,ref=2,

kinship=kinship1)$LR["isCousins"]

LR2 <-FamiliasPosterior(pedigrees, D21S2055, datamatrix,ref=2,

kinship=kinship2)$LR["isCousins"]

#Simulation alternative

N <- 4000

res <- kinshipBySimulation(pedigrees, D21S2055, datamatrix, kinship1, N)

LR3 <- res$likelihoods[1]/res$likelihoods[2]

res <- kinshipBySimulation(pedigrees, D21S2055, datamatrix, kinship2, N)

LR4 <- res$likelihoods[1]/res$likelihoods[2]

c(LR1,LR3,LR2, LR4)
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Solutions: “Making Decisions”

Solution Exercise 8.1.

a) The optimal decision is

choose H1 if o > c2
choose H2 if o < 1

c1

make no decision otherwise

As o = LR ·o0,standard, this decision rule can be rewritten as

choose H1 if LR > c2
o0,standard

choose H2 if LR < 1
c1·o0,standard

make no decision otherwise

The lab’s decision rule is

choose H1 if LR > CH

choose H2 if LR < CL

make no decision otherwise

If this is the optimal rule it follows that

CH =
c2

o0,standard

CL =
1

c1 · o0,standard

63
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giving

c1 =
1

CL · o0,standard
c2 = CH · o0,standard

b) Replacing c1 and c2 in
1

c1
< o0 · x < c2

with their computed values yields

CL · o0,standard < o0 · x < CH · o0,standard

or
o0,standard

o0
CL < x <

o0,standard
o0

CH .

As
o0,standard

o0
> 1 it is clear there exists x which satisfy the inequalities

above and also x > CH .

c) The expected cost of deciding for H1 is

Pr(H2) · (1 + c2) =
1

1 + o
(c2 + 1) =

1 + o0,standard · CH

1 + o0 · LR

As we assume that LR satisfies

o0 · LR < o0,standard · CH

it follows that the cost is always larger than 1.

Solution Exercise 8.2.

a) The cost of deciding on H1 when H2 is true was denoted as 1 + c2 in the
text. It was also shown that c2 = LH , when cutoff rates reflect optimal
decisions. Thus, the expected cost of deciding on H1 is

Pr(H2 | D)(1 + LH)

The posterior probability for H2 can be expressed in terms of the posterior
odds o using

Pr(H2 | D) =
1

1 + o



65

and we also have that o = LR ·o0 = LR with the prior odds o0 = 1.
Putting this together, the expected cost of deciding on H1 becomes

Pr(H2 | D)(1 + LH) =
1 + LH

1 + LR

Similarly, the expected cost of deciding on H2 is

Pr(H1 | D)(1+c1) =
o

1 + o
(1+1/LL) =

LR

1 + LR
(1+1/LL) =

LR + LR /LL

1 + LR
.

b) The costs of the three possible decisions are

Deciding on H1:
1 + LH

1 + LR

Deciding on H2:
LR + LR /LL

1 + LR
Making no decision: 1

In the case that 0 < LR < LL we get that

LR + LR /LL

1 + LR
<

LR +1

1 + LR
= 1 <

1 + LH

1 + LR

so choosing H2 minimizes the cost. The extra costs associated with taking
the other decisions can be found by computing the differences of the costs
above and are given in Table 8.1.

In the case that LL ≤ LR ≤ LH we get that

1 ≤ 1 + LH

1 + LR

and

1 ≤ LR + LR /LL

1 + LR
so making no decisions is optimal. Extra costs of other decisions are given
in Table 8.1.

Finally, when LH < LR, we get

1 + LH

1 + LR
<

1 + LR

1 + LR
= 1 <

LR + LR /LL

LR +1

so H1 is the optimal decisions, and additional costs of other decisions are
again found in Table 8.1.
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0 < LR < LL LL ≤ LR ≤ LH LH < LR
Standard rule 0 0 0
Exclusion rule
(RMNE < o0/c2)

1+LH−LR−LR /LL

1+LR
LH−LR
1+LR

0

Exclusion rule
(RMNE ≥ o0/c2)

1−LR /LL

1+LR
0 LR−LH

1+LR

Table 8.1: In each of the four cases given in the top row, the table shows the
additional cost of following a decision rule compared to the cost of following
the optimal rule.

Solution Exercise 8.3.

a) Assuming H2, AF and CH are unrelated, and the result follows.

b) This is achieved by:

require(paramlink)

ped <- nuclearPed(1)

alleles <- c("a", "b")

afreq <- c(0.5, 0.5)

m <- marker(ped, alleles = alleles, afreq = afreq)

tableHD <- oneMarkerDistribution (ped, c(1, 2), m)

tableHP <- oneMarkerDistribution (ped, c(1, 3), m)

c) We find Pr(X1 = 0) = 0 and Pr(X2 = 0) = 0.0625 + 0.0625 = 0.125.

d) The previous answer gives one entry in the table, the other entries can be
calculated similarly.

e) We find

E[X−11 ] = 0.75 +
1

2
× 0.25 = 0.875 = Pr(X1 > 0).

Solution Exercise 8.4.

a) We find

E(X1) = 0× 0.000 + 1× 0.75 + 2× 0.250 = 1.25.

E(X2) = 1× 0.125 + 1× 0.75 + 1× 0.125 = 1.00.
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With k1 = 1 and k2 = 0

E[X1] =
1

4
L+ (1− 0− 1

4
) =

L+ 3

4
=

5

4

b) This follows from the expression for the expectation: a1L
2 + b1L + c1 >

b2L+ c2 when L > L0 for some L0 when a1 > 0.

Solution Exercise 8.5.

a) PE = 0.0512.

b) Required additional code:

p <- c(0.2, 0.8)

exclusionPower(claim, true, available, alleles = 2, afreq = p,

known_genotypes <- list(c(3, 1, 1)))

c) Required additional code:

exclusionPower(claim, true, available, alleles = 2,

afreq = p, Xchrom = TRUE)

d) Required additional code:

p <- c(0.7, 0.1, 0.1, 0.1)

exclusionPower(claim, true, available, alleles = 1:4, afreq = p)

exclusionPower(claim, true, available, alleles = 1:4, afreq = p,

known_genotypes = list(c(3, 1, 1)))

exclusionPower(claim, true, available, alleles = 1:4,

afreq = p, Xchrom = TRUE)

e) Required code:

mother.daughter <- nuclearPed(1, sex = 2)

sisters <- relabel(nuclearPed(2, sex = c(2, 2)), c(101, 102, 2, 3))

PE1 <- exclusionPower(ped_claim = mother.daughter,

ped_true = sisters, ids = c(2, 3), alleles = 2)

f) Required code for last part:
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sisters.LOOP <- addParents(sisters, 101, father = 201, mother = 202)

sisters.LOOP <- addParents(sisters.LOOP, 102, father = 201, mother = 203)

exclusionPower(ped_claim = mother.daughter, ped_true = sisters.LOOP,

loop = 101,ids = c(2, 3), alleles = 2,

afreq=c(0.1, 0.9), known_genotypes=list(c(3, 1, 1)))

Solution Exercise 8.6.

a) Answer provided, i.e.,

x <- nuclearPed(2, sex=1)

data(NorwegianFrequencies)

L1 <- NorwegianFrequencies[["SE33"]]

m <- marker(x, alleles=names(L1), afreq=L1,

3, c(11,12), 4, c(12,13))

simPed <- markerSim(x, N=5, available = c(1,2),

partialmarker = m, seed = 17,verbose=FALSE)

b) plot(simPed, marker = 1:5)

Solution Exercise 8.7.

a) Answer provided

b) See below.

c)
set.seed(1234)

nsim <- 10000

x <- sample.profiles(N = nsim, freqs = freqsNLngm)

x.FS <- sample.relatives(x, 1, type = "FS")

SI <- ki(x, x.FS, hyp.1="FS", hyp.2="UN", freqs = freqsNLngm)

range(SI) #Comment: extreme variation

hist(log(SI, base = 10),

xlab = "log10(SI)", prob = TRUE)

length(SI[ SI < 1 ])/nsim # estimates P(LR < 1| sibs)

Solution Exercise 8.8.
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a)
t <- 5

p <- 1 - pnorm(t)

b)
set.seed(17)

N <- 10^6

z <- rnorm(N, mean = 0)

p1.hat <- mean(z > t)

c)
set.seed(17)

z <- rnorm(N, mean = t)

p2.hat <- mean((z > t)*dnorm(z)/dnorm(z, mean = 5))

d) Answer provided.

e)
require(DNAprofiles)

data(freqsNLngm)

hp <- ki.dist(hyp.1 = "PO", hyp.2 = "UN", hyp.true = "PO",

freqs.ki = freqsNLngm)

hd = ki.dist( hyp.1 = "PO", hyp.2 = "UN", hyp.true = "UN",

freqs.ki = freqsNLngm)

set.seed(100)

q <- sim.q(t = 0, dists = hd, dists.sample = hp, N = 1e5)

# Exact value

prod(1-sapply(hd, function(y) y$fx[ 1])) #Exact

#Alternative:

pair.H1 <- dists.product.pair(hd, appr = TRUE)

cdf.H1 <- dist.pair.cdf(pair.H1)

1 - cdf.H1(0)

f)
hp <- ki.dist(hyp.1 = "PO", hyp.2 = "UN", hyp.true = "PO",

freqs.ki = freqsNLngm[ 1])

hd <- ki.dist(hyp.1 = "PO", hyp.2 = "UN", hyp.true = "UN",

freqs.ki = freqsNLngm[ 1])

LR <- hd[[ 1]]$x

fx <- hd[[ 1]]$fx

t <- quantile(LR, probs = 0.5)
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q.exact <- sum(fx[ LR > t ])

nsim <- 100

q <- rep(NA, nsim)

for (i in 1:nsim)

q[ i] <- sim.q(t, dists = hd, dists.sample = hp, N = 1e5)

plot(density(q), xlab = "Estimated q",

main = "Density estimate of exceedance probability

\n exact: vertical line")

abline(v = q.exact)

Solution Exercise 8.9.

a) The four probabilities of the example are estimated as follows

require(Familias); require(DNAprofiles)

data(NorwegianFrequencies)

set.seed(17);N=1e6

h1 <- ki.dist(hyp.1 = "FS", hyp.2 = "UN", hyp.true = "FS",

freqs.ki = NorwegianFrequencies[1:15])

h2 <- ki.dist(hyp.1 = "FS", hyp.2 = "UN", hyp.true = "UN",

freqs.ki = NorwegianFrequencies[1:15])

p1 <- 1-sim.q(t=10000, N=N, dists=h1)

p2 <- 1-sim.q(t=1/10000, N=N, dists=h1)

p3 <- sim.q(t=1/10000, N=N, dists=h2)

set.seed(17)

p4 <- sim.q(t=10000, N=N, dists=h2, dists.sample = h1)

c(p1, p2, p3, p4)

b) Expand on the previous code as below:

set.seed(17)

p.with <- p.with.out <- NULL

for (i in 1:10){

p.with <- c(p.with,sim.q(t=10000, N=N, dists=h2, dists.sample = h1))

p.with.out <- c(p.with.out,sim.q(t=10000, N=N, dists=h2))

}

res <- cbind(p.with,p.with.out)

apply(res,2,mean)
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The average values based on the simulations agree well, but there is less
variability, as expected, when importance sampling is used.

c) Code follows:

expectedCostExample.8 <-function( L.L = 1/10000,L.H = 10000, odds,

c.D , p1, p2, p3,p4 )

c.D + odds/(odds + 1) * (p1 + p2/L.L) + 1/(odds + 1) *

(p3 + p4 * L.H)

expectedCostExample.8(c.D=0.5,odds=100,p1=0.65,p2=0,p3=1,p4=9.83*10^{-4})
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