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A B S T R A C T

In relationship testing the aim is to determine the most probable pedigree structure given genetic

marker data for a set of persons. Disaster Victim Identification (DVI) based on DNA data from presumed

relatives of the missing persons can be considered to be a collection of relationship problems. Forensic

calculations in investigative mode address questions like ‘‘How many markers and reference persons are

needed?’’ Such questions can be answered by simulations. Mutations, deviations from Hardy–Weinberg

Equilibrium (or more generally, accounting for population substructure) and silent alleles cannot be

ignored when evaluating forensic evidence in case work. With the advent of new markers, so called

microvariants have become more common. Previous mutation models are no longer appropriate and a

new model is proposed. This paper describes methods designed to deal with DVI problems and a new

simulation model to study distribution of likelihoods. There are softwares available, addressing similar

problems. However, for some problems including DVI, we are not aware of freely available validated

software. The Familias software has long been widely used by forensic laboratories worldwide to

compute likelihoods in relationship scenarios, though previous versions have lacked desired

functionality, such as the above mentioned. The extensions as well as some other novel features

have been implemented in the new version, freely available at www.familias.no. The implementation

and validation are briefly mentioned leaving complete details to Supplementary sections.

� 2014 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

There are several applications that require determination of
genetic relatedness. The focus of this paper is to describe
methods and implementations for complex relationships pro-
blems and disaster victim identification (DVI). While we have
forensic applications in mind similar problems occur in a wide
range of areas. The core computational problem is to calculate
the likelihood of the data given competing hypotheses and from
this to form the likelihood ratio (LR). We may further use a
Bayesian approach with prior information to compute the
posterior probabilities. In this paper we restrict attention to
unlinked STR markers and then likelihoods are typically
calculated using extensions of the Elston–Stewart (ES) algorithm
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[1] accommodating correction for population substructure
(theta-correction), mutations and silent alleles [2]. The algorithm
is in concept a peeling algorithm, where we consider subsets of
a pedigree as conditionally independent given the connecting
node. As a consequence, the algorithm may require long
computation time, when marriage and inbreeding loops are
present [3]. An implementation of the ES algorithm is provided in
the software Familias [4]. The program is used by a large number
of laboratories worldwide [5] when calculating likelihoods in
relationship scenarios. Though previous versions of the software
have included several important features, such as null/silent
alleles, advanced mutation models and subpopulation correction,
Familias has also lacked some desired functionality [6]. With the
advent of new STR markers, micro-variant alleles (i.e., 9.3) have
become more common necessitating an appropriate mutation
model to handle transitions to and from such alleles. Whereas
previous models are generally not designed to handle these
transitions, this paper presents a new model, providing an
extension of the stepwise mutation model [7,8], thereby
accommodating for microvariants.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.fsigen.2014.07.004&domain=pdf
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Monte Carlo simulation is a generic approach of relevance to
virtually all areas of science. In our context, simulations can be
used to get an idea of what evidential strength we will achieve for a
given case. Based on simulations, one may for instance conclude
that it is not worthwhile to proceed with a case unless more
reference persons are genotyped or the number of genetic markers
is increased. Simulation also extends the results from a point
estimate of the LR to a complete description of its probability
distribution. The model used for simulation is the same as the one
used for likelihood and LR calculation. In other words, the
simulations reflect the chosen mutation model, silent alleles and
incorporate theta correction.

Disaster victim identification (DVI) applications can be
considered as a potentially large collection of relationship
estimation problems. Typically, LR ratios (sometimes converted
to posterior probabilities) are reported and the aim is to compare
large amounts of reference data, i.e., family members or personal
belongings of missing persons, with unidentified remains. The
underlying core computational model remains the same as in
standard likelihood calculations. Since the early report on the
successful use of DNA as a tool to identify victims of a mass disaster
by Olaisen et al. [9], numerous papers have been published
demonstrating its application and utility [10–15]. For the scope of
this paper we consider smaller to medium sized DVI situation
where the number of missing persons is typically limited to 1000.

As previously stated, the emphasis of this paper is on the new
methods. Details on implementation and validation of the new
software Familias 3 [hereafter called only Familias], which
extends on Familias 2.0 [4], appear as supplementary material
and in the manual. Some of the functionality of the new version
or similar features can be found in other software [6,16,17].
However, (i) Familias is validated Drabek [6], (ii) widely used [5]
(iii) freely available and (iv) the basic code is open (see http://
familias.name/OpenFamilias). In addition, the implementation
benefits from integrating similar problems (LR calculations,
simulations and DVI feature) into one user friendly environ-
ment.

2. Methods

In relationship testing, mutually exclusive hypotheses are
normally formulated. A hypothesis H corresponds to a pedigree,
where the latter connects two or more individuals in a
relationship tree. The core problem is to calculate the
PðdatajH; fÞ where the data consists of alleles for different
genetic markers and f represents parameters needed to model
e.g. mutations and subpopulation structure. The computation of
the likelihood is in this paper based on the Elston–Stewart
algorithm [1] and later extensions described in [18]. Briefly the
algorithm peels the pedigree by calculating conditional proba-
bilities for cutsets, where each cutset is conditionally indepen-
dent given the rest of the pedigree, and can thus be effectively
used on large pedigrees. The algorithm can also effectively
accommodate many unlinked markers. Should we need to
account for dependency between markers, other algorithms and
implementations must be considered, e.g. FamLink[19] or Merlin
[20]. For two different hypotheses H1 and H2, the likelihood ratio
LR ¼ PðdatajH1; fÞ=PðdatajH2; fÞ is typically calculated and
reported.

The next section first describes the new mutation model, then
the simulation approach and a framework to deal with DVI
problems. Thereafter, some general principles related to validation
are described. Finally, the implementation is briefly described
deferring more complete descriptions to supplementary sections
and the manual.
2.1. Mutation model

As mentioned, there is a need for a new mutation model capable
of handling transitions to and from microvariants, e.g. between 9
and 9.3. Some current models treat such microvariant mutations

(MVM) in the same way as integer mutations (IM) or neglect them
as the mentioned transitions are considered improbable. This is
biologically unreasonable and the problem has become more
pronounced as MVM are more common in the latest STR kits. We
provide a new stepwise mutation model accounting for MVM. The
model is called the extended step wise model in the implementa-
tion.

We specify the model by letting M be the mutation matrix, with
elements mij, where i,j = 1, . . ., N and where N is the number of
alleles. Each element mij is the probability of a transition from
allele Ai to allele Aj. The current model separates the overall

mutation rate, denoted m, into two parts, one corresponding to

integer mutations, R, and one to the micro-variants a, i.e.,

m ¼ R þ a. Biologically R is often explained by slippage error

during DNA replication [8] while a is connected to insertions/

deletions and point mutations. The last parameter, the mutation
range r, is defined as for previous IM models; it is the value with
which the probability decreases for each further step away from
the original allele mutates.

Next the model is specified precisely by the transition
probabilities mij. There are three different alternatives:

1. mi j ¼ ð1 � ðR þ aÞÞ if i ¼ j, i.e. the probability that an allele does
not mutate.

2. mi j ¼ kið1 � aÞrji� jj for integer mutations.
3. mi j ¼ kia=Ni for micro variant mutations: Ni is the number of

MVM-s from allele i. The rows must sum to unity and therefore
the normalizing constants ki are determined by the constraintsPN

j¼1 mi j ¼ 1.

Example 1. Consider a marker containing the alleles 9, 9.3, 10, 10.3
and 15. The transition matrix M is then given by:

M ¼

1� ðRþaÞ k1a=2 ð1 �aÞk1r1 k1a=2 ð1�aÞk1r6

k2a=3 1� ðRþaÞ k2a=3 ð1�aÞk2r1 k2a=3
ð1�aÞk3r1 k3a=2 1�ðRþaÞ k3a=2 ð1�aÞk1r5

k4a=3 ð1�aÞk4r1 k4a=3 1�ðRþaÞ k4a=3
ð1�aÞk5r6 k5a=2 ð1 �aÞk5r5 k5a=2 1�ðRþaÞ

2
66664

3
77775

In this case, k1 is found as follows 1 ¼ 1 � ðR þ aÞ þ k1a=2 þ
ð1 � aÞk1r þ k1a=2 þ ð1 � aÞk1r6, k1 ¼ ðR þ aÞ=ða þ ð1 � aÞðr þ
r6ÞÞ: Similar calculation can be shown for the other ki. Note that, the
matrix M is not necessarily symmetric, meaning that the
probability of observing a mutation from 9 to 9.3 is not the same
as observing a mutation from 9.3 to 9. This is a consequence of the
definition of M. Further note that for transitions from allele 9 for
example, Ni = 2 as there are two MVM:s given allele 9 as starting
point.

2.2. Simulation

Simulations provide means to calculate prediction intervals
and investigate specific likelihood ratio thresholds for a given
case. The probability of falsely including/excluding a true
hypothesis with a given LR threshold can be estimated.
The interface may be utilized to examine the number of
genetic markers we need to obtain a sufficiently good LR,
prior to deciding to accept a case, as well as providing intervals.
The simulation interface accounts for all parameters in the
model.

http://familias.name/OpenFamilias
http://familias.name/OpenFamilias
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Specifically, the simulation algorithm starts by detecting all
founders for a given pedigree. Founder genotypes are sampled
using defined allele frequencies in combination with possible
subpopulation correction, modeled by the parameter u (some-
times denoted Fst in the literature). Furthermore, transitions
within the pedigree are sampled using a transition matrix, the
latter depending on the selected mutation model. Interested
users may use raw data from the simulations to study observed
mutation rates or the occurrence of silent alleles. Moreover, in
addition to providing prediction intervals, the interface provide
relevant functionality to study thresholds and false positive/
negative rates, i.e., given two mutually exclusive hypotheses, H1

and H2, the probability PðLR � xjHÞ is estimated for a given
threshold x and an assumed hypothesis H. Simply put, it gives
the probability of obtaining a LR at least as great as a given
threshold.

2.3. DVI

Since the introduction of DNA, genetic data from relatives or
personal belongings of missing persons have become one of
the most important and reliable means of identification
[10–12,14,21]. The disaster victim identification (DVI) module
in Familias is provided to assist in any operation that requires an
all-against-all search. To specify, we have K number of
unidentified DNA profiles and M number of reference DNA
profiles. The former data set may be reduced to K0 as identical
DNA profiles are found through blind matching while the latter is
reduced to L0 if some of the M reference profiles belong to
the same cluster, i.e., in this setting meaning the same reference
family. We have K � K 0 and L � L0. For k = 1, . . ., K0 we compare
each unidentified DNA profile k with the l = 1, . . ., L0 reference
families. In Familias we specify two sets of data; PM (Post
Mortem) data – obtained from unidentified remains, where
several of the remains as mentioned may originate from the
same individual and AM (Ante Mortem) data, where we define
missing persons. In the AM data we define reference families for
each missing person, where we may have genetic data from
relatives of the missing person or direct matching samples such
as personal belongings. The reference family can contain
arbitrary pedigree structures., Complex pedigrees, mutation
models (see below) and theta correction, will typically produce
longer computation times. The module calculates likelihoods for
each combination of PM data and AM data. Using a Bayesian
approach the likelihoods are converted to posterior probabilities
including prior probabilities set by the user. The choice of priors
has been debated elsewhere [22] and can be influenced in
Familias by changing the size of the DVI operation. As of now,
meta data is not used to adjust priors or to exclude unidentified
persons based on gender. This may in some situations be
appropriate as the meta data may have been incorrectly
specified.

In addition to the DVI module, there is a blind search
interface, allowing the user to search a set of persons for
unknown relations. The feature may be used on any data set, e.g.
to search for relations in a set of individuals before creating a
population frequency database or as in the DVI situation to find
direct matches or relations between PM samples. The blind
searching is restricted to pairwise searches for a number of
predefined relationships and implements a fast algorithm based
on the formulas presented in Table 4 in Hepler et al. [23]. The
algorithm does not account for mutation unless the parent–child
relation is chosen; while theta correction is applied in all
scenarios should the value be nonzero. Briefly, the formulas
implemented are based on identical by descent (IBD) sharing
probabilities not accounting for inbreeding. The general
formula is,

PðdatajHÞ ¼ PðIBD ¼ 0jHÞg0 þ PðIBD ¼ 1jHÞg1 þ PðIBD

¼ 2jHÞg2 (1)

where P(IBD = 0jH) = k0, P(IBD = 1jH) = k1 and P(IBD = 2jH) = k2 are
the probabilities that two individuals share 0, 1 respectively 2
alleles identical by descent.; g0, g1 and g2 are functions of allele
probabilities depending only on the genotype data. A more
general formula, also accounting for inbreeding can be derived,
though its utility in the current setting is limited.

For the new direct matching feature, Familias implements a
general approach. To specify, consider two profiles G1 and G2.
Further, consider the competing hypotheses:

H1: The profiles belong to the same person
H2: The profiles belong to two unrelated persons

The hypotheses, and the current setting, is distinct from the
more common situation where we have some trace evidence from
a crime scene and a reference profile to compare with. The former
being uncertain while the latter is commonly considered to be
accurate.

To compute the LR we require some more definitions. We
consider a latent genotype Gtrue, consisting of all possible
genotypes for the current marker. We can now specify the LR as

LR ¼ PðG1; G2jH1Þ
PðG1; G2jH2Þ

¼
PN

i¼1

PN
j¼1 PðGtrue;i; jÞPðG1jGtrue;i; jÞPðG2jGtrue;i; jÞ

PðG1ÞPðG2Þ
(2)

where N is the number of alleles at the current marker and
P(Gtrue,i,j) is the genotype probability, pi*pj, for the latent genotype
with alleles i and j. P(G1jGtrue,i,j) and P(G2jGtrue,i,j) are the transition
probabilities from the latent genotype to the observed genotypes.
To calculate the transition probabilities in the direct matching we
specify three parameters, d = allelic dropout probability, c = allelic
dropin probability and e = typing error probability. Here, we
specify dropout as the probability of one allele not being
unobserved for a heterozygous genotype (allelic dropout), dropin
as the probability of an extra allele being observed for a
homozygous genotype (allelic dropin) and typing error as the
probability of some other laboratory error leading to an incorrect
genotype [24]. Dropouts, dropins and errors are assumed to occur
independently. Note that these parameters only apply to direct
matching function and are not used in the kinship calculations. See
Table 1 below for a list of P(G1,G2jH1) and P(G1,G2jH2) for some
combinations of genotypes G1 and G2. (The formulas are simplified
to fit, removing terms negligible in the calculations assuming
d > > c > e; the implementation is exact, see Supplementary data
1 for a more thorough walkthrough of Eq. (2), including an example
where the simplifying assumptions are omitted)

We see that if d = c = e = 0, the LR [P(G1,G2jH1)/P(G1,G2jH2)] in
the first and fifth line of Table 1 reduces to1/P(A,A) and 1/P(A,B),
while the remaining lines simplifies to zero. Further note that if
d > >c > e and d is comparatively small, say below 0.1, several
latent genotypes are unlikely as the transition probabilities are
very small. Moreover, if subpopulation correction is nonzero the
allele probabilities are not independent. The user-friendlyness of
handling three parameters (d, c and e) instead of one can be
discussed. Similar to Merlin [20], one may instead use a general
error variable, including all the effects possibly causing an
erroneous genotype.



Table 1
LRs based on the direct matching feature of Familias.

G1 G2 P(G1,G2jH1) P(G1,G2jH2)

A,A A,A [

(1 � d2)2(1 � e)2(1 � c)2]P(A,A)

P(A,A)*P(A,A)

A,A A,B (1 � e)2[P(A,A)(1 � d2)2cP(B) + P(A,B)d(1 � d)

(1 � c)(1 � d2)]

P(A,A)*P(A,B)

A,A B,B (1 � e)2[(1 � c)2d2(1 � d)2]P(A,B) P(A,A)*P(B,B)

A,A B,C (1 � e)2[P(A,B)d(1 � d)cP(C) + P(A,C)d(1 � d)cP(B)] P(A,A)*P(B,C)

A,B A,B (1 � e)2[(1 � d)2(1 � c)2] P(A,B) P(A,B)*P(A,B)

A,B B,C (1 � e)2[P(B,B)(1 � d)2c2P(A)P(C)]a P(A,B)*P(B,C)

A,B C,D (1 � d2)2(1 � c)2[P(A,B)e + P(C,D)e]a P(A,B)*P(C,D)

a Note that neither of the observed genotypes, G1 or G2, is probable as the latent

genotype.
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2.4. Validation

Validation can mean several things, including validation of
methods and validation of the implementation. Here we focus on
approaches that may be of general interest and which can be used
to validate also other programs. Specific validation examples
showing correct numerical results, i.e. results that can be derived
by other means, typically exact formulae, appear in Supplementary
data 2. (Some useful validation files are available at the Familias
homepage)

2.4.1. Some useful validation formulae in simulations

The expected value of the LR assuming the denominator
hypothesis H2 to be true is 1

EðLRjH2Þ ¼ ð1 � pÞ0 þ p
1

p
¼ 1 (3)

where p is the random match probability and 0 and 1/p are the
two possible values for the likelihood ratio. This follows directly
from the definition of the likelihood ratio and expectation as
pointed out by Thompson [18]. This is true also if mutations and
population substructure are modeled. Slooten and Egeland [25]
presents further theoretical properties of LR:s. For instance, the
identity

SDðLRjH2Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
EðLRjH1Þ � 1

p
(4a)

relating the standard deviation (SD) under H2 to the expected value
under H1. This last equation, however, is not valid when there are
mutations or theta correction is made.

Eqs. (3) and (4) can be used to check simulations under the
denominator hypothesis when p is not too small, typically for one
marker. When p is small, say below 10–10 any reasonable number
of simulations should lead to all LR-s being 0 as the probability of a
random match is then negligible.

Turning to validation for simulations under the numerator
hypothesis, the general formula for the expected value for all
pairwise, non-inbred relationships presented in Slooten and
Egeland [25] can be used

EðLRjH1Þ ¼ aL2 þ bL þ ð1 � a � bÞ (4b)

where L ¼ alleles; a ¼ k2
2

2
; and b ¼ k2

1 þ 4k1k2 þ 2k2
2

4

As an example, note for a parent–child relation k1 = 1 and k2 = 0
and the expected LR is therefore (L + 3)/4 for one marker. This
generalizes directly to n independent markers

EðLRjH1Þ ¼
Yn

i¼1

Li þ 3

4

where Li is the number of alleles for marker i.

We have checked the code using the above formulae for one
marker at the time. To get an indication of the simulation
uncertainty, several simulations can be run with different seeds.

Exact calculations are hard for general mutation models.
There is, however, one exemption as explained next. Consider the
hypotheses H1:AF is the father CH and H2:AF and CH are unrelated.

The genotypes of AF and CH are denoted a/b and c/d. For instance,
if both individuals are homozygote 9,9 then a = b = c = d = 9. A
case which would need a mutation to be consistent with
paternity occurs for genotypes 9,9.3 and 10,10.3 corresponding
to a = 9, b = 9.3, c = 10 and d = 10.3. The likelihood ratio may be
written [26]

LR ¼ 1

4

ðmac þ mbcÞ pd þ ðmad þ mbdÞ pc

pc pd

(5)

where p denotes allele frequency. Example 2 below relies heavily
on the above equation.

2.5. Implementation

The software functionality described herein is implemented in a
Windows friendly software, Familias version 3.1.4 at the time of
writing. See Supplementary data 2 for some validation examples.
The mayor changes since Familias 2.0 is the introduction of the
new mutation model, the simulation interface as well as the new
DVI module. We also introduce a new blind match searching
function implementing some new functionality, primarily con-
nected to the direct matching, see previous description. The latest
version of Familias is freely available at www.familias.no.
Moreover, several other new features will be presented in the
next releases, e.g. the possibility to model profiles with dropouts
[Manuscript submitted].

3. Results

3.1. New mutation model and simulation

Example 2. In this example both simulation and the new mutation
model is illustrated. Consider one marker with the mutation model
and alleles as described in Section 2 of this paper. The mutation
parameters are specified as:

R ¼ 0:005; r ¼ 0:1 and a ¼ 0:001:

The mutation matrix M becomes

Allele 9 9.3 10 10.3 15

9 9.940e�01 2.973e�05 5.945e�03 2.973e�05 5.945e�08

9.3 1.982e�05 9.940e�01 1.982e�05 5.945e�03 1.982e�05

10 5.939e�03 2.973e�05 9.940e�01 2.973e�05 5.939e�07

10.3 1.982e�05 5.946e�03 1.982e�05 9.940e�01 1.982e�05

15 5.929e�06 2.967e�03 5.929e�05 2.967e�03 9.940e�01

For the numerical examples below, the allele frequencies for the
alleles (9, 9.3, 10, 10.3, 15) are (0.05, 0.05, 0.20, 0.30, 0.40). From
Eq. (5) we find, when the alleged father is 9, 9.3 and the child 10, 10.3

LR ¼ 1

4
ðð5:94e � 03 þ 1:98e � 05Þ � 0:2 þ ð2:97e � 05 þ 5:94e

� 03Þ � 0:3Þ=ð0:2 � 0:3Þ

¼ 0:0124:

which is accurately reproduced by Familias 3. Similarly, simula-
tions closely reproduce the theoretical values. For instance, the
expected value of the LR assuming AF and CH to be unrelated is 1

http://www.familias.no/


Table 2
LRs for some relationship hypotheses, calculated versus unrelated as alternative

hypothesis, for a pair of individuals P1 and P2.

Relationship LR (u = 0) LR (u = 0.01)

Direct match 29.07 18.12

Siblings 5.25 3.919

Half siblings 5.5 4.169

Cousins 3.25 2.584

Parent–child 10 7.338

2nd cousins 1.5625 1.396
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according to Eq. (3) and the computer output based on 10,000
simulations gives a value close to the theoretical. Furthermore, the
expected LR assuming AF to be the father, (L + 3)/4 = (5 + 3)/5 = 2,
from Eq. (4b) is also consistent with simulations.

3.2. DVI module and blind search interface

To validate the DVI module simulated data was constructed
for a number of relationships (Data available upon request).
Specifically, 100 pairs of siblings, 100 pairs of grandparents/
grandchildren and 100 pairs of parent/childs were generated
using the simulation interface. For each pair one of the
individuals was withdrawn and denoted as missing. All missing
persons, in total 300, were collected into a data set of
unidentified remains. The reference families were constructed
according to the simulated relationship, i.e., 100 families where
the reference data was from siblings, 100 families where the
reference data was from grandparents and 100 families where
the reference data was from a parent. An all-against-all search
was performed in the DVI module, where LRs were calculated for
Table 3
Distribution of log10 likelihood ratios for 10,000 simulations using three different

methods.

Method Pedigree Mean 5percentile 1percentile

Familias3_no_mut Both parents 10.25 8.1 7.4

Ge et al. Both parents 10.26 8.07 7.34

Familias3_mut Both parents 10.17 7.85 6.63

Familias3_no_mut One parent/One child 4.08 2.47 1.90

Ge et al. One parent/One child 4.09 2.48 1.92

Familias3_mut One parent/One child 4.07 2.43 1.69

Familias3_no_mut 2 full sibs 5.88 2.64 1.25

Ge et al. 2 full sibs 5.88 2.65 1.34

Familias3_mut 2 full sibs 5.86 2.48 1.09

Familias3_no_mut 1 halfsib 0.92 �0.59 �1.16

Ge et al. 1 halfsib 0.91 �0.57 �1.16

Familias3_mut 1 halfsib 1.16 �0.70 �1.29

Familias3_no_mut 2 children (same parent 2) 6.97 4.31 3.43

Ge et al. 2 children (same parent 2) 6.98 4.33 3.35

Familias3_mut 2 children (same parent 2) 6.94 4.24 3.14

The methods are Familias 3 (with and without mutations considered) as well as

results presented by Ge et al., the pedigrees are described elsewhere [27].

LR ¼ PðG1; G2jH0Þ
PðG1; G2jH1Þ

¼
PA

i¼1

PA
j¼i PðGtrue;i; jÞPðG1jGtrue;i; jÞPðG2jGtrue;i; jÞ

PðG1ÞPðG2Þ
¼ We simplify and remove terms which is negligible in the numeratorh i

¼ pð9Þ pð9j9; uÞPð9; 9j9; 9ÞPð9; 10j9; 9Þ þ 2 pð9Þ pð9j10; uÞPð9; 9j9; 10ÞPð9; 10j9; 10Þ
2 pð9Þ pð9j9; uÞ pð9j9; 9; uÞ pð10j9; 9; 9; uÞ

¼ ð1 � eÞ2½ pð9Þ pð9j9; uÞð1 � d2Þc pð10Þ þ 2 pð9Þ pð9j10; uÞdð1 � dÞð1 � dÞ2ð1 � cÞ�
2 pð9Þ pð9j9; uÞ pð9j9; 9; uÞ pð10j9; 9; 9; uÞ
all possible combinations of unidentified remain and reference
family. In total 300 � 300 = 90,000 comparisons were done,
producing a list of matches above a given threshold (in this case
set as low as LR = 1). The match list indicated some false matches
(i.e. false inclusions), which is most probably due to the low LR
threshold. However, no false match obtained a LR higher than the
true match. Some true matches for the missing persons obtained
very low LR barely above 1.0, which was in some of the cases
explained by simulated mutations (grandparents and parent)
and in other cases by low number of shared alleles (sibling cases),
(Data available upon request). See also Ge et al. for a discussion
on choice of reference family relatives in DVI operations [27]. The
point with this validation is not to investigate the match
threshold but rather to demonstrate the accuracy in the
calculations.

We further use constructed data to validate the blind searching
function. Consider a system with alleles similar to the first
example, i.e., the allele frequencies for the alleles [9, 9.3, 10, 10.3,
15] are [0.05, 0.05, 0.20, 0.30, 0.40]. For simplicity we let the
mutation rate be zero, while we consider both u = 0 and u = 0.01.
Consider two persons P1 and P2 with genotypes G1 and G2. We can
now easily calculate the likelihood ratio for the predefined
relationships in the blind search interface using Eq. (1). Note that
the interface allows us to scale versus some other relationship
rather than unrelated, but for the current calculation we use
unrelated as the alternative hypothesis.

Let G1 = 9,9 and G2 = 9,10. For u = 0.01 we need to calculate the
updated set of frequencies, [p(9), p(9j9), p(9j9,9),
p(10j9,9,9)] = [0.05, 0.0595, 0.0688, 0.194], using formulas in
Balding et al. [28]. Note that this set of frequencies will change
if two alleles are IBD, i.e. for IBD = 2 and IBD = 1 we need to update
the frequencies as only two respectively three alleles are drawn
from the population.
The likelihood for the different hypotheses of relatedness
can now be calculated from Eq. (1) as, LðDatajHÞ ¼
k02 pð9Þ2 pð9Þ pð10Þ þ k1 pð9Þ pð9Þ pð10Þ, where k0 and k1 are
replaced by the values according to the relationship H.

The direct match LR can be calculated according to Eq. (2), by
summing over all possible genotypes for the latent genotype and
compute the likelihood for each case according to: (We specify
d = 0.1, e = 0.001 and c = 0.001, which are the default values in
Familias)
The theoretical values in coincide with the values calculated in
Familias (Table 2). Also note that the Direct match obtain a high LR
even though the profiles are not identical, this is due to the high
values on the parameters d, c and e.

3.3. Simulations

To further corroborate output from the simulation interface we
compared results on some standard forensic cases with simula-
tions reported in Table 6 of Ge et al. [27], see Table 3. The
investigated relationships are described elsewhere, op.cit., but are
based on simulations on the standard 13 CODIS STR markers, in
order to determine how many relatives are necessary in a given
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case to obtain sufficient LRs. The Familias simulation interface
produces almost identical output as presented by Ge and
colleagues. As a comparison we also included simulations using
the extended stepwise mutation model and the results are still
close to the simulations without mutations.

4. Discussion

Familias is a well-known software in the forensic community
and used by a number of laboratories [5]. The software facilitates
the interpretation of the evidence by computing likelihood ratios
and posterior probabilities for a given set of relationship
hypotheses and genetic marker data. This paper describes methods
implemented in the new version (Familias 3), providing consider-
able extensions to previous versions [4].

A comprehensive simulation interface provides versatile
functionality for studying distribution of likelihood ratios for a
given case. Users may now investigate a case prior to accepting it
by computing prediction intervals and decide whether decisive
evidence is likely to be obtained. The authors are aware of the
discussion in the forensic community on the use of case specific
thresholds rather than using an general LR/Posterior probability
threshold for all cases. We do not propagate for lowering the
threshold only because for a given case the evidence will never
reach the required value. The users should instead study the false
positive/negative rates to find an appropriate limit. As presented in
this paper, the algorithm can simulate arbitrary pedigree
structures where the only limitation is set by the computation
time.

To assist in mass disaster identifications, we have developed a
DVI module, allowing users to handle small to medium scale
identifications. There are several papers and online discussions
following previous larger scale mass disaster incidents, e.g. the
Tsunami disaster [12], the WTC terror attack [11,14] and
the hurricane Katrina [29,30]. This paper includes some points
on the implementation and interested users should follow the
references given above for further mathematical discussions.
Similar to the simulation interface, the DVI module adopts the full
functionality of Familias, allowing for subpopulation frequency
correction, silent alleles and mutations. The module further allows
the definition of multiple alternative family hypotheses, within
each family, thus permitting each reference family to have several
missing persons and the user can weigh the evidence given a match
based on the possibility that the unidentified person may fit in
several locations in a family tree.

To further aid in the identification of unidentified remains, a
blind search tool is included. As presented in this paper the tool can
be used to rapidly scan data sets for unknown relations; unknown
in the sense that we have no prior knowledge how the individuals
in the data set are related. In addition to assist in DVI operations the
search can also be performed to verify that data sets for the
creation of population frequency databases do not contain related
individuals. The blind search is restricted to pair wise comparisons
on a number of predefined relationships implementing the
formulas presented in Hepler et al. not accounting for inbreeding
and mutations [23]. As the formulas are general in the sense that
any non-inbreed pair wise relationship can be defined, the
implementation in Familias opens up for future extensions where
any non-inbred relationship between two individuals could be
specified using the k0, k1 and k2 parameters, see Eq. (1).
Furthermore, the search also includes a newly developed direct
matching function (also part of the DVI module), which
incorporates dropout, dropin and typing error probabilities. The
latter is probably hard to estimate but can in some situations not
be neglected, and therefore equally important as the two first
mentioned probabilities.
Further, to cope with the increasing polymorphism in the new
STR markers, we have developed a new mutation model. The
model builds on the stepwise model [7], but provides extensions
for microvariants, e.g. 9.3. Microvariants are more and more
common, for instance the STR marker SE33 (ACTPB2) includes
several alleles with a non-integer repeat unit and even though
mutation rates for transitions between non-integer alleles and
integer alleles may sometimes be negligible we require an
appropriate model to handle them. This transition model is not
stationary. In other words, the distribution of allele frequencies
will change slightly with each generation in the pedigree. A
stationary version of the above model would be a welcomed
extension. Such an extension should preserve the main features
like the diagonal elements, i.e., the overall mutation probability.
We have not yet been able to derive such a stationary model.

In summary, the software Familias has previously been proven
to be a resourceful tool in calculations concerning genetic
relatedness [4–6]. We believe the extensions provided in this
paper will be important for many users where previous versions
have lacked desired functionality. The latest version can be freely
downloaded at http://www.familias.no.
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